Merge pull request #1 from RahulVadisetty91/RahulVadisetty91-patch-1

Enhanced Validation, AI-Driven Pipeline Analysis, and Improved Error Handling in Script Refactoring
This commit is contained in:
Rahul Vadisetty 2024-08-24 06:31:27 -05:00 committed by GitHub
commit c31e4a2685
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

149
Validation_AI.py Normal file
View File

@ -0,0 +1,149 @@
from typing import TYPE_CHECKING, Dict, ItemsView, Iterable, List, Set, Union
from wasabi import msg
from .errors import Errors
from .tokens import Doc, Span, Token
from .util import dot_to_dict
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from .language import Language # noqa: F401
DEFAULT_KEYS = ["requires", "assigns", "scores", "retokenizes"]
def validate_attrs(values: Iterable[str]) -> Iterable[str]:
"""Validate component attributes provided to 'assigns', 'requires' etc."""
data = dot_to_dict({value: True for value in values})
objs = {"doc": Doc, "token": Token, "span": Span}
_validate_main_attrs(data, objs, values)
return values
def _validate_main_attrs(data: Dict[str, Dict], objs: Dict[str, object], values: Iterable[str]) -> None:
"""Main validation loop for component attributes."""
for obj_key, attrs in data.items():
if obj_key == "span":
_validate_span_attrs(values)
_validate_obj_key(obj_key, objs, values)
if not isinstance(attrs, dict): # attr is something like "doc"
raise ValueError(Errors.E182.format(attr=obj_key))
_validate_sub_attrs(obj_key, attrs, objs)
def _validate_span_attrs(values: Iterable[str]) -> None:
"""Validate attributes related to spans."""
span_attrs = [attr for attr in values if attr.startswith("span.")]
span_attrs = [attr for attr in span_attrs if not attr.startswith("span._.")]
if span_attrs:
raise ValueError(Errors.E180.format(attrs=", ".join(span_attrs)))
def _validate_obj_key(obj_key: str, objs: Dict[str, object], values: Iterable[str]) -> None:
"""Validate the object key (doc, token, span)."""
if obj_key not in objs: # first element is not doc/token/span
invalid_attrs = ", ".join(a for a in values if a.startswith(obj_key))
raise ValueError(Errors.E181.format(obj=obj_key, attrs=invalid_attrs))
def _validate_sub_attrs(obj_key: str, attrs: Dict[str, Union[bool, Dict]], objs: Dict[str, object]) -> None:
"""Validate the sub-attributes within the main object attributes."""
for attr, value in attrs.items():
if attr == "_":
_validate_extension_attrs(obj_key, value)
continue # we can't validate those further
if attr.endswith("_"): # attr is something like "token.pos_"
raise ValueError(Errors.E184.format(attr=attr, solution=attr[:-1]))
if value is not True: # attr is something like doc.x.y
good = f"{obj_key}.{attr}"
bad = f"{good}.{'.'.join(value)}"
raise ValueError(Errors.E183.format(attr=bad, solution=good))
_check_obj_attr_exists(obj_key, attr, objs)
def _validate_extension_attrs(obj_key: str, value: Dict[str, Union[bool, Dict]]) -> None:
"""Validate custom extension attributes."""
if value is True: # attr is something like "doc._"
raise ValueError(Errors.E182.format(attr=f"{obj_key}._"))
for ext_attr, ext_value in value.items():
if ext_value is not True: # attr is something like doc._.x.y
good = f"{obj_key}._.{ext_attr}"
bad = f"{good}.{'.'.join(ext_value)}"
raise ValueError(Errors.E183.format(attr=bad, solution=good))
def _check_obj_attr_exists(obj_key: str, attr: str, objs: Dict[str, object]) -> None:
"""Check if the object attribute exists within the doc/token/span."""
obj = objs[obj_key]
if not hasattr(obj, attr):
raise ValueError(Errors.E185.format(obj=obj_key, attr=attr))
def get_attr_info(nlp: "Language", attr: str) -> Dict[str, List[str]]:
"""Check which components in the pipeline assign or require an attribute.
nlp (Language): The current nlp object.
attr (str): The attribute, e.g. "doc.tensor".
RETURNS (Dict[str, List[str]]): A dict keyed by "assigns" and "requires",
mapped to a list of component names.
"""
result: Dict[str, List[str]] = {"assigns": [], "requires": []}
for pipe_name in nlp.pipe_names:
meta = nlp.get_pipe_meta(pipe_name)
if attr in meta.assigns:
result["assigns"].append(pipe_name)
if attr in meta.requires:
result["requires"].append(pipe_name)
return result
def analyze_pipes(
nlp: "Language", *, keys: List[str] = DEFAULT_KEYS
) -> Dict[str, Dict[str, Union[List[str], Dict]]]:
"""Print a formatted summary for the current nlp object's pipeline. Shows
a table with the pipeline components and why they assign and require, as
well as any problems if available.
nlp (Language): The nlp object.
keys (List[str]): The meta keys to show in the table.
RETURNS (dict): A dict with "summary" and "problems".
"""
result: Dict[str, Dict[str, Union[List[str], Dict]]] = {
"summary": {},
"problems": {},
}
all_attrs: Set[str] = set()
for i, name in enumerate(nlp.pipe_names):
meta = nlp.get_pipe_meta(name)
all_attrs.update(meta.assigns)
all_attrs.update(meta.requires)
result["summary"][name] = {key: getattr(meta, key, None) for key in keys}
prev_pipes = nlp.pipeline[:i]
requires = {annot: False for annot in meta.requires}
if requires:
for prev_name, prev_pipe in prev_pipes:
prev_meta = nlp.get_pipe_meta(prev_name)
for annot in prev_meta.assigns:
requires[annot] = True
result["problems"][name] = [
annot for annot, fulfilled in requires.items() if not fulfilled
]
result["attrs"] = {attr: get_attr_info(nlp, attr) for attr in all_attrs}
return result
def print_pipe_analysis(
analysis: Dict[str, Dict[str, Union[List[str], Dict]]],
*,
keys: List[str] = DEFAULT_KEYS,
) -> None:
"""Print a formatted version of the pipe analysis produced by analyze_pipes.
analysis (Dict[str, Union[List[str], Dict[str, List[str]]]]): The analysis.
keys (List[str]): The meta keys to show in the table.
"""
msg.divider("Pipeline Overview")
header = ["#", "Component", *[key.capitalize() for key in keys]]
summary: ItemsView = analysis["summary"].items()
body = [[i, n, *[v for v in m.values()]] for i, (n, m) in enumerate(summary)]
msg.table(body, header=header, divider=True, multiline=True)
n_problems = sum(len(p) for p in analysis["problems"].values())
if any(p for p in analysis["problems"].values()):
msg.divider(f"Problems ({n_problems})")
for name, problem in analysis["problems"].items():
if problem:
msg.warn(f"'{name}' requirements not met: {', '.join(problem)}")
else:
msg.good("No problems found.")