Merge pull request #13282 from danieldk/maintenance/merge-main-into-develop-20240129

Merge main into `develop`
This commit is contained in:
Sofie Van Landeghem 2024-01-30 13:51:33 +01:00 committed by GitHub
commit c32c1289a9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 28 additions and 16 deletions

View File

@ -13,7 +13,7 @@ from .. import util
from ..language import Language
from ..tokens import Doc
from ..training import Corpus
from ._util import Arg, Opt, benchmark_cli, setup_gpu
from ._util import Arg, Opt, benchmark_cli, import_code, setup_gpu
@benchmark_cli.command(
@ -30,12 +30,14 @@ def benchmark_speed_cli(
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
n_batches: int = Opt(50, "--batches", help="Minimum number of batches to benchmark", min=30,),
warmup_epochs: int = Opt(3, "--warmup", "-w", min=0, help="Number of iterations over the data for warmup"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
# fmt: on
):
"""
Benchmark a pipeline. Expects a loadable spaCy pipeline and benchmark
data in the binary .spacy format.
"""
import_code(code_path)
setup_gpu(use_gpu=use_gpu, silent=False)
nlp = util.load_model(model)
@ -171,5 +173,5 @@ def print_outliers(sample: numpy.ndarray):
def warmup(
nlp: Language, docs: List[Doc], warmup_epochs: int, batch_size: Optional[int]
) -> numpy.ndarray:
docs = warmup_epochs * docs
docs = [doc.copy() for doc in docs * warmup_epochs]
return annotate(nlp, docs, batch_size)

View File

@ -15,7 +15,12 @@ def doc_w_attrs(en_tokenizer):
Token.set_extension("_test_token", default="t0")
doc[1]._._test_token = "t1"
return doc
yield doc
Doc.remove_extension("_test_attr")
Doc.remove_extension("_test_prop")
Doc.remove_extension("_test_method")
Token.remove_extension("_test_token")
def test_serialize_ext_attrs_from_bytes(doc_w_attrs):

View File

@ -1268,13 +1268,14 @@ the [binary `.spacy` format](/api/data-formats#binary-training). The pipeline is
warmed up before any measurements are taken.
```cli
$ python -m spacy benchmark speed [model] [data_path] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
$ python -m spacy benchmark speed [model] [data_path] [--code] [--batch_size] [--no-shuffle] [--gpu-id] [--batches] [--warmup]
```
| Name | Description |
| -------------------- | -------------------------------------------------------------------------------------------------------- |
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to benchmark the speed of. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of benchmark data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--batch-size`, `-b` | Set the batch size. If not set, the pipeline's batch size is used. ~~Optional[int] \(option)~~ |
| `--no-shuffle` | Do not shuffle documents in the benchmark data. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
@ -1296,6 +1297,9 @@ input formats are:
When a directory is provided it is traversed recursively to collect all files.
When loading a .spacy file, any potential annotations stored on the `Doc` that are not overwritten by the pipeline will be preserved.
If you want to evaluate the pipeline on raw text only, make sure that the .spacy file does not contain any annotations.
```bash
$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
```

View File

@ -13,7 +13,7 @@ between `Doc` objects.
<Infobox variant ="warning">
Note that a `Vocab` instance is not static. It increases in size as texts with
new tokens are processed.
new tokens are processed. Some models may have an empty vocab at initialization.
</Infobox>
@ -93,6 +93,7 @@ given string, you need to look it up in
> #### Example
>
> ```python
> nlp("I'm eating an apple")
> apple = nlp.vocab.strings["apple"]
> oov = nlp.vocab.strings["dskfodkfos"]
> assert apple in nlp.vocab