mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Added model command to create model from raw data:
words counts, brown clusters and vectors
This commit is contained in:
parent
1e3068ec33
commit
c332ffdde1
150
spacy/cli/model.py
Normal file
150
spacy/cli/model.py
Normal file
|
@ -0,0 +1,150 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import plac
|
||||
import math
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
import spacy
|
||||
import numpy
|
||||
from ast import literal_eval
|
||||
from pathlib import Path
|
||||
from preshed.counter import PreshCounter
|
||||
|
||||
from spacy.compat import fix_text
|
||||
from spacy.vectors import Vectors
|
||||
from spacy.util import prints, ensure_path
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
lang=("model language", "positional", None, str),
|
||||
output_dir=("model output directory", "positional", None, Path),
|
||||
freqs_loc=("location of words frequencies file", "positional",
|
||||
None, Path),
|
||||
clusters_loc=("optional: location of brown clusters data",
|
||||
"option", None, str),
|
||||
vectors_loc=("optional: location of vectors file in GenSim text format",
|
||||
"option", None, str),
|
||||
prune_vectors=("optional: number of vectors to prune to",
|
||||
"option", "V", int)
|
||||
)
|
||||
def main(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None, prune_vectors=-1):
|
||||
if not freqs_loc.exists():
|
||||
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
|
||||
clusters_loc = ensure_path(clusters_loc)
|
||||
vectors_loc = ensure_path(vectors_loc)
|
||||
|
||||
probs, oov_prob = read_freqs(freqs_loc)
|
||||
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else None
|
||||
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
||||
|
||||
nlp = create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors)
|
||||
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
nlp.to_disk(output_dir)
|
||||
return nlp
|
||||
|
||||
|
||||
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
|
||||
prints("Creating model...")
|
||||
nlp = spacy.blank(lang)
|
||||
for lexeme in nlp.vocab:
|
||||
lexeme.rank = 0
|
||||
|
||||
lex_added = 0
|
||||
for i, (word, prob) in enumerate(tqdm(sorted(probs.items(), key=lambda item: item[1], reverse=True))):
|
||||
lexeme = nlp.vocab[word]
|
||||
lexeme.rank = i
|
||||
lexeme.prob = prob
|
||||
lexeme.is_oov = False
|
||||
# Decode as a little-endian string, so that we can do & 15 to get
|
||||
# the first 4 bits. See _parse_features.pyx
|
||||
if word in clusters:
|
||||
lexeme.cluster = int(clusters[word][::-1], 2)
|
||||
else:
|
||||
lexeme.cluster = 0
|
||||
lex_added += 1
|
||||
nlp.vocab.cfg.update({'oov_prob': oov_prob})
|
||||
|
||||
if len(vectors_data):
|
||||
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
||||
if prune_vectors >= 1:
|
||||
nlp.vocab.prune_vectors(prune_vectors)
|
||||
vec_added = len(nlp.vocab.vectors)
|
||||
|
||||
prints("{} entries, {} vectors".format(lex_added, vec_added),
|
||||
title="Sucessfully compiled vocab")
|
||||
return nlp
|
||||
|
||||
|
||||
def read_vectors(vectors_loc):
|
||||
prints("Reading vectors...")
|
||||
with vectors_loc.open() as f:
|
||||
shape = tuple(int(size) for size in f.readline().split())
|
||||
vectors_data = numpy.zeros(shape=shape, dtype='f')
|
||||
vectors_keys = []
|
||||
for i, line in enumerate(tqdm(f)):
|
||||
pieces = line.split()
|
||||
word = pieces.pop(0)
|
||||
vectors_data[i] = numpy.array([float(val_str) for val_str in pieces], dtype='f')
|
||||
vectors_keys.append(word)
|
||||
return vectors_data, vectors_keys
|
||||
|
||||
|
||||
def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
|
||||
prints("Counting frequencies...")
|
||||
counts = PreshCounter()
|
||||
total = 0
|
||||
with freqs_loc.open() as f:
|
||||
for i, line in enumerate(f):
|
||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
||||
freq = int(freq)
|
||||
counts.inc(i + 1, freq)
|
||||
total += freq
|
||||
counts.smooth()
|
||||
log_total = math.log(total)
|
||||
probs = {}
|
||||
with freqs_loc.open() as f:
|
||||
for line in tqdm(f):
|
||||
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
||||
doc_freq = int(doc_freq)
|
||||
freq = int(freq)
|
||||
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
|
||||
word = literal_eval(key)
|
||||
smooth_count = counts.smoother(int(freq))
|
||||
probs[word] = math.log(smooth_count) - log_total
|
||||
oov_prob = math.log(counts.smoother(0)) - log_total
|
||||
return probs, oov_prob
|
||||
|
||||
|
||||
def read_clusters(clusters_loc):
|
||||
prints("Reading clusters...")
|
||||
clusters = {}
|
||||
with clusters_loc.open() as f:
|
||||
for line in tqdm(f):
|
||||
try:
|
||||
cluster, word, freq = line.split()
|
||||
word = fix_text(word)
|
||||
except ValueError:
|
||||
continue
|
||||
# If the clusterer has only seen the word a few times, its
|
||||
# cluster is unreliable.
|
||||
if int(freq) >= 3:
|
||||
clusters[word] = cluster
|
||||
else:
|
||||
clusters[word] = '0'
|
||||
# Expand clusters with re-casing
|
||||
for word, cluster in list(clusters.items()):
|
||||
if word.lower() not in clusters:
|
||||
clusters[word.lower()] = cluster
|
||||
if word.title() not in clusters:
|
||||
clusters[word.title()] = cluster
|
||||
if word.upper() not in clusters:
|
||||
clusters[word.upper()] = cluster
|
||||
return clusters
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user