mirror of
https://github.com/explosion/spaCy.git
synced 2025-06-06 06:03:11 +03:00
_distill_loop: fix distill_data docstring
Make similar changes in train_while_improving, since it also had incorrect types and missing type annotations.
This commit is contained in:
parent
abc4a7d320
commit
c355367f87
|
@ -295,10 +295,9 @@ def _distill_loop(
|
|||
teacher (Language): The teacher pipeline to distill from.
|
||||
student (Language): The student pipeline to distill into.
|
||||
optimizer: The optimizer callable.
|
||||
distill_data (Iterable[Batch]): A generator of batches, with the distillation
|
||||
data. Each batch should be a Sized[Tuple[Input, Annot]]. The distillation
|
||||
data iterable needs to take care of iterating over the epochs and
|
||||
shuffling.
|
||||
distill_data (Iterable[List[Example]]): A generator of batches,
|
||||
with the distillation data. The distillation data iterable
|
||||
needs to take care of iterating over the epochs and shuffling.
|
||||
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
||||
The callback should take no arguments and return a tuple
|
||||
`(main_score, other_scores)`. The main_score should be a float where
|
||||
|
@ -392,8 +391,8 @@ def _distill_loop(
|
|||
def train_while_improving(
|
||||
nlp: "Language",
|
||||
optimizer: Optimizer,
|
||||
train_data,
|
||||
evaluate,
|
||||
train_data: Iterable[List[Example]],
|
||||
evaluate: Callable[[], Tuple[float, Dict[str, float]]],
|
||||
*,
|
||||
dropout: float,
|
||||
eval_frequency: int,
|
||||
|
@ -413,10 +412,9 @@ def train_while_improving(
|
|||
Positional arguments:
|
||||
nlp: The spaCy pipeline to evaluate.
|
||||
optimizer: The optimizer callable.
|
||||
train_data (Iterable[Batch]): A generator of batches, with the training
|
||||
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
|
||||
data iterable needs to take care of iterating over the epochs and
|
||||
shuffling.
|
||||
train_data (Iterable[List[Example]]): A generator of batches, with the
|
||||
training data. The training data iterable needs to take care of
|
||||
iterating over the epochs and shuffling.
|
||||
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
||||
The callback should take no arguments and return a tuple
|
||||
`(main_score, other_scores)`. The main_score should be a float where
|
||||
|
@ -480,7 +478,7 @@ def train_while_improving(
|
|||
score, other_scores = evaluate()
|
||||
else:
|
||||
score, other_scores = evaluate()
|
||||
optimizer.last_score = score
|
||||
optimizer.last_score = score # type: ignore[assignment]
|
||||
results.append((score, step))
|
||||
is_best_checkpoint = score == max(results)[0]
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue
Block a user