Add previous HashEmbedCNN tok2vec to make transition easier

This commit is contained in:
Matthew Honnibal 2020-07-28 22:43:06 +02:00
parent 1784c95827
commit c35d6282fc

View File

@ -20,8 +20,37 @@ def tok2vec_listener_v1(width, upstream="*"):
return tok2vec return tok2vec
@registry.architectures.register("spacy.HashEmbedCNN.v1")
def build_hash_embed_cnn_tok2vec(
*,
width: int,
depth: int,
embed_size: int,
window_size: int,
maxout_pieces: int,
subword_features: bool,
dropout: Optional[float],
pretrained_vectors: Optional[bool]
) -> Model[List[Doc], List[Floats2d]]:
"""Build spaCy's 'standard' tok2vec layer, which uses hash embedding
with subword features and a CNN with layer-normalized maxout."""
return build_Tok2Vec_model(
embed=MultiHashEmbed(
width=width,
rows=embed_size,
also_embed_subwords=subword_features,
also_use_static_vectors=bool(pretrained_vectors),
),
encode=MaxoutWindowEncoder(
width=width,
depth=depth,
window_size=window_size,
maxout_pieces=maxout_pieces
)
)
@registry.architectures.register("spacy.Tok2Vec.v1") @registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec( def build_Tok2Vec_model(
embed: Model[List[Doc], List[Floats2d]], embed: Model[List[Doc], List[Floats2d]],
encode: Model[List[Floats2d], List[Floats2d]], encode: Model[List[Floats2d], List[Floats2d]],
) -> Model[List[Doc], List[Floats2d]]: ) -> Model[List[Doc], List[Floats2d]]:
@ -62,7 +91,7 @@ def MultiHashEmbed(
] ]
else: else:
embeddings = [make_hash_embed(NORM)] embeddings = [make_hash_embed(NORM)]
concat_size = width * (len(embeddings) + also_use_static_vectors)
if also_use_static_vectors: if also_use_static_vectors:
model = chain( model = chain(
concatenate( concatenate(
@ -73,7 +102,7 @@ def MultiHashEmbed(
), ),
StaticVectors(width, dropout=0.0), StaticVectors(width, dropout=0.0),
), ),
with_array(Maxout(width, nP=3, dropout=0.0, normalize=True)), with_array(Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)),
ragged2list(), ragged2list(),
) )
else: else:
@ -83,7 +112,7 @@ def MultiHashEmbed(
list2ragged(), list2ragged(),
with_array(concatenate(*embeddings)), with_array(concatenate(*embeddings)),
), ),
with_array(Maxout(width, nP=3, dropout=0.0, normalize=True)), with_array(Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)),
ragged2list(), ragged2list(),
) )
return model return model