Move old examples

This commit is contained in:
Matthew Honnibal 2016-10-16 21:56:32 +02:00
parent 7887ab3b36
commit c36e8676aa
2 changed files with 0 additions and 136 deletions

View File

@ -1,64 +0,0 @@
from __future__ import unicode_literals, print_function
import json
import pathlib
import random
import spacy
from spacy.pipeline import EntityRecognizer
from spacy.gold import GoldParse
def train_ner(nlp, train_data, entity_types):
ner = EntityRecognizer.blank(nlp.vocab, entity_types=entity_types,
features=nlp.Defaults.entity_features)
for itn in range(5):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
ner.update(doc, gold)
ner.model.end_training()
return ner
def main(model_dir=None):
if model_dir is not None:
model_dir = pathlb.Path(model_dir)
if not model_dir.exists():
model_dir.mkdir()
assert model_dir.isdir()
nlp = spacy.load('en', parser=False, entity=False, vectors=False)
train_data = [
(
'Who is Shaka Khan?',
[(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
),
(
'I like London and Berlin.',
[(len('I like '), len('I like London'), 'LOC'),
(len('I like London and '), len('I like London and Berlin'), 'LOC')]
)
]
ner = train_ner(nlp, train_data, ['PERSON', 'LOC'])
doc = nlp.make_doc('Who is Shaka Khan?')
nlp.tagger(doc)
ner(doc)
for word in doc:
print(word.text, word.tag_, word.ent_type_, word.ent_iob)
if model_dir is not None:
with (model_dir / 'config.json').open('wb') as file_:
json.dump(ner.cfg, file_)
ner.model.dump(str(model_dir / 'model'))
if __name__ == '__main__':
main()
# Who "" 2
# is "" 2
# Shaka "" PERSON 3
# Khan "" PERSON 1
# ? "" 2

View File

@ -1,72 +0,0 @@
"""A quick example for training a part-of-speech tagger, without worrying
about the tokenization, or other language-specific customizations."""
from __future__ import unicode_literals
from __future__ import print_function
import plac
from os import path
import os
from spacy.vocab import Vocab
from spacy.tokenizer import Tokenizer
from spacy.tagger import Tagger
import random
# You need to define a mapping from your data's part-of-speech tag names to the
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
# See here for the Universal Tag Set:
# http://universaldependencies.github.io/docs/u/pos/index.html
# You may also specify morphological features for your tags, from the universal
# scheme.
TAG_MAP = {
'N': {"pos": "NOUN"},
'V': {"pos": "VERB"},
'J': {"pos": "ADJ"}
}
# Usually you'll read this in, of course. Data formats vary.
# Ensure your strings are unicode.
DATA = [
(
["I", "like", "green", "eggs"],
["N", "V", "J", "N"]
),
(
["Eat", "blue", "ham"],
["V", "J", "N"]
)
]
def ensure_dir(*parts):
path_ = path.join(*parts)
if not path.exists(path_):
os.mkdir(path_)
return path_
def main(output_dir):
ensure_dir(output_dir)
ensure_dir(output_dir, "pos")
ensure_dir(output_dir, "vocab")
vocab = Vocab(tag_map=TAG_MAP)
tokenizer = Tokenizer(vocab, {}, None, None, None)
# The default_templates argument is where features are specified. See
# spacy/tagger.pyx for the defaults.
tagger = Tagger.blank(vocab, Tagger.default_templates())
for i in range(5):
for words, tags in DATA:
tokens = tokenizer.tokens_from_list(words)
tagger.train(tokens, tags)
random.shuffle(DATA)
tagger.model.end_training()
tagger.model.dump(path.join(output_dir, 'pos', 'model'))
with io.open(output_dir, 'vocab', 'strings.json') as file_:
tagger.vocab.strings.dump(file_)
if __name__ == '__main__':
plac.call(main)