* Add docstring to English class

This commit is contained in:
Matthew Honnibal 2015-01-27 02:45:21 +11:00
parent 830b9358f8
commit c38c62d4a3

View File

@ -33,6 +33,8 @@ def get_lex_props(string):
LOCAL_DATA_DIR = path.join(path.dirname(__file__), 'data')
parse_if_model_present = -1
class English(object):
"""The English NLP pipeline.
@ -43,23 +45,10 @@ class English(object):
data_dir (unicode): A path to a directory, from which to load the pipeline.
If None, looks for a directory named "data/" in the same directory as
the present file, i.e. path.join(path.dirname(__file__, 'data')).
If path.join(data_dir, 'pos') exists, the tagger is loaded from it.
If path.join(data_dir, 'deps') exists, the parser is loaded from it.
See Pipeline Directory Structure for details.
Attributes:
vocab (spacy.vocab.Vocab): The lexicon.
If path.join(data_dir, 'pos') exists, the tagger is loaded from there.
strings (spacy.strings.StringStore): Encode/decode strings to/from integer IDs.
tokenizer (spacy.tokenizer.Tokenizer): The start of the pipeline.
tagger (spacy.en.pos.EnPosTagger):
The part-of-speech tagger, which also performs lemmatization and
morphological analysis.
parser (spacy.syntax.parser.GreedyParser):
A greedy shift-reduce dependency parser.
If path.join(data_dir, 'deps') exists, the parser is loaded from there.
"""
def __init__(self, data_dir=LOCAL_DATA_DIR):
self._data_dir = data_dir
@ -99,24 +88,51 @@ class English(object):
self._parser = GreedyParser(path.join(self._data_dir, 'deps'))
return self._parser
def __call__(self, text, tag=True, parse=True):
"""Apply the pipeline to some text.
def __call__(self, text, tag=True, parse=parse_if_model_present):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
The tagger and parser are lazy-loaded the first time they are required.
Loading the parser model usually takes 5-10 seconds.
Args:
text (unicode): The text to be processed.
Keyword args:
tag (bool): Whether to add part-of-speech tags to the text. This
will also set morphological analysis and lemmas.
tag (bool): Whether to add part-of-speech tags to the text. Also
sets morphological analysis and lemmas.
parse (bool): Whether to add dependency-heads and labels to the text.
parse (True, False, -1): Whether to add labelled syntactic dependencies.
-1 (default) is "guess": It will guess True if tag=True and the
model has been installed.
Returns:
tokens (spacy.tokens.Tokens):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
if parse == True and tag == False:
msg = ("Incompatible arguments: tag=False, parse=True"
"Part-of-speech tags are required for parsing.")
raise ValueError(msg)
tokens = self.tokenizer(text)
if tag or parse and self.has_tagger_model:
if parse == -1 and tag == False:
parse = False
elif parse == -1 and not self.has_parser_model:
parse = False
if tag and self.has_tagger_model:
self.tagger(tokens)
if parse == True and not self.has_parser_model:
msg = ("Receive parse=True, but parser model not found.\n\n"
"Run:\n"
"$ python -m spacy.en.download\n"
"To install the model.")
raise IOError(msg)
if parse and self.has_parser_model:
self.parser(tokens)
return tokens