mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-16 07:01:58 +03:00
Set spaces on gold doc after conversion
This commit is contained in:
parent
c2fd1e4eb9
commit
c39401105b
|
@ -13,6 +13,7 @@ from .iob_utils import spans_from_biluo_tags
|
|||
from .align import Alignment
|
||||
from ..errors import Errors, AlignmentError
|
||||
from ..syntax import nonproj
|
||||
from ..util import get_words_and_spaces
|
||||
|
||||
|
||||
cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
|
||||
|
@ -65,8 +66,8 @@ cdef class Example:
|
|||
if "ORTH" not in tok_dict:
|
||||
tok_dict["ORTH"] = [tok.text for tok in predicted]
|
||||
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
|
||||
if "SPACY" not in tok_dict:
|
||||
tok_dict["SPACY"] = None
|
||||
if not _has_field(tok_dict, "SPACY"):
|
||||
spaces = _guess_spaces(predicted.text, tok_dict["ORTH"])
|
||||
return Example(
|
||||
predicted,
|
||||
annotations2doc(predicted.vocab, tok_dict, doc_dict)
|
||||
|
@ -127,19 +128,20 @@ cdef class Example:
|
|||
def get_aligned_ner(self):
|
||||
x_ents = []
|
||||
gold_to_cand = self.alignment.gold_to_cand
|
||||
x_text = self.x.text
|
||||
for y_ent in self.y.ents:
|
||||
x_start = gold_to_cand[y_ent.start]
|
||||
x_end = gold_to_cand[y_ent.end-1]
|
||||
if x_start is not None and x_end is not None:
|
||||
x_ents.append(Span(self.x, x_start, x_end+1, label=y_ent.label))
|
||||
else:
|
||||
x_span = self.x.char_span(
|
||||
y_ent.start_char,
|
||||
y_ent.end_char,
|
||||
label=y_ent.label
|
||||
)
|
||||
elif x_text.count(y_ent.text) == 1:
|
||||
start_char = x_text.index(y_ent.text)
|
||||
end_char = start_char + len(y_ent.text)
|
||||
x_span = self.x.char_span(start_char, end_char, label=y_ent.label)
|
||||
if x_span is not None:
|
||||
x_ents.append(x_span)
|
||||
else:
|
||||
print(y_ent, y_ent.label_)
|
||||
x_tags = biluo_tags_from_offsets(
|
||||
self.x,
|
||||
[(e.start_char, e.end_char, e.label_) for e in x_ents],
|
||||
|
@ -318,6 +320,9 @@ def _fix_legacy_dict_data(example_dict):
|
|||
token_dict[remapping[key]] = value
|
||||
else:
|
||||
raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=remapping.keys()))
|
||||
text = example_dict.get("text", example_dict.get("raw"))
|
||||
if text and not _has_field(token_dict, "SPACY"):
|
||||
token_dict["SPACY"] = _guess_spaces(text, token_dict["ORTH"])
|
||||
if "HEAD" in token_dict and "SENT_START" in token_dict:
|
||||
# If heads are set, we don't also redundantly specify SENT_START.
|
||||
token_dict.pop("SENT_START")
|
||||
|
@ -327,6 +332,18 @@ def _fix_legacy_dict_data(example_dict):
|
|||
"doc_annotation": doc_dict
|
||||
}
|
||||
|
||||
def _has_field(annot, field):
|
||||
if field not in annot:
|
||||
return False
|
||||
elif annot[field] is None:
|
||||
return False
|
||||
elif len(annot[field]) == 0:
|
||||
return False
|
||||
elif all([value is None for value in annot[field]]):
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
|
||||
if isinstance(biluo_or_offsets[0], (list, tuple)):
|
||||
|
@ -380,3 +397,21 @@ def _parse_links(vocab, words, links, entities):
|
|||
ent_kb_ids[i] = true_kb_ids[0]
|
||||
|
||||
return ent_kb_ids
|
||||
|
||||
|
||||
def _guess_spaces(text, words):
|
||||
spaces = []
|
||||
text_pos = 0
|
||||
# align words with text
|
||||
for word in words:
|
||||
try:
|
||||
word_start = text[text_pos:].index(word)
|
||||
except ValueError:
|
||||
spaces.append(True)
|
||||
continue
|
||||
text_pos += word_start + len(word)
|
||||
if text_pos < len(text) and text[text_pos] == " ":
|
||||
spaces.append(True)
|
||||
else:
|
||||
spaces.append(False)
|
||||
return spaces
|
||||
|
|
Loading…
Reference in New Issue
Block a user