mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 03:26:24 +03:00
Use plac annotations for arguments and add n_iter
This commit is contained in:
parent
bc2c92f22d
commit
c3b681e5fb
|
@ -29,6 +29,7 @@ Last updated for: spaCy 2.0.0a18
|
||||||
"""
|
"""
|
||||||
from __future__ import unicode_literals, print_function
|
from __future__ import unicode_literals, print_function
|
||||||
|
|
||||||
|
import plac
|
||||||
import random
|
import random
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -58,16 +59,13 @@ TRAIN_DATA = [
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def main(model=None, new_model_name='animal', output_dir=None):
|
@plac.annotations(
|
||||||
"""Set up the pipeline and entity recognizer, and train the new entity.
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||||||
|
new_model_name=("New model name for model meta.", "option", "nm", str),
|
||||||
model (unicode): Model name to start off with. If None, a blank English
|
output_dir=("Optional output directory", "option", "o", Path),
|
||||||
Language class is created.
|
n_iter=("Number of training iterations", "option", "n", int))
|
||||||
new_model_name (unicode): Name of new model to create. Will be added to the
|
def main(model=None, new_model_name='animal', output_dir=None, n_iter=50):
|
||||||
model meta and prefixed by the language code, e.g. 'en_animal'.
|
"""Set up the pipeline and entity recognizer, and train the new entity."""
|
||||||
output_dir (unicode / Path): Optional output directory. If None, no model
|
|
||||||
will be saved.
|
|
||||||
"""
|
|
||||||
if model is not None:
|
if model is not None:
|
||||||
nlp = spacy.load(model) # load existing spaCy model
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
print("Loaded model '%s'" % model)
|
print("Loaded model '%s'" % model)
|
||||||
|
@ -91,7 +89,7 @@ def main(model=None, new_model_name='animal', output_dir=None):
|
||||||
with nlp.disable_pipes(*other_pipes) as disabled: # only train NER
|
with nlp.disable_pipes(*other_pipes) as disabled: # only train NER
|
||||||
random.seed(0)
|
random.seed(0)
|
||||||
optimizer = nlp.begin_training(lambda: [])
|
optimizer = nlp.begin_training(lambda: [])
|
||||||
for itn in range(50):
|
for itn in range(n_iter):
|
||||||
losses = {}
|
losses = {}
|
||||||
gold_parses = get_gold_parses(nlp.make_doc, TRAIN_DATA)
|
gold_parses = get_gold_parses(nlp.make_doc, TRAIN_DATA)
|
||||||
for batch in minibatch(gold_parses, size=3):
|
for batch in minibatch(gold_parses, size=3):
|
||||||
|
@ -139,5 +137,4 @@ def get_gold_parses(tokenizer, train_data):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import plac
|
|
||||||
plac.call(main)
|
plac.call(main)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user