mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-13 09:42:26 +03:00
WIP
This commit is contained in:
parent
cda2bd01d4
commit
c3f9fab5e8
|
@ -12,6 +12,7 @@ REGISTRY_POPULATED = False
|
||||||
# Global flag to track if factories have been registered
|
# Global flag to track if factories have been registered
|
||||||
FACTORIES_REGISTERED = False
|
FACTORIES_REGISTERED = False
|
||||||
|
|
||||||
|
|
||||||
def populate_registry() -> None:
|
def populate_registry() -> None:
|
||||||
"""Populate the registry with all necessary components.
|
"""Populate the registry with all necessary components.
|
||||||
|
|
||||||
|
@ -30,15 +31,24 @@ def populate_registry() -> None:
|
||||||
from .pipeline.ner import make_ner_scorer
|
from .pipeline.ner import make_ner_scorer
|
||||||
from .pipeline.lemmatizer import make_lemmatizer_scorer
|
from .pipeline.lemmatizer import make_lemmatizer_scorer
|
||||||
from .pipeline.span_finder import make_span_finder_scorer
|
from .pipeline.span_finder import make_span_finder_scorer
|
||||||
from .pipeline.spancat import make_spancat_scorer, build_ngram_suggester, build_ngram_range_suggester, build_preset_spans_suggester
|
from .pipeline.spancat import (
|
||||||
from .pipeline.entityruler import make_entity_ruler_scorer as make_entityruler_scorer
|
make_spancat_scorer,
|
||||||
|
build_ngram_suggester,
|
||||||
|
build_ngram_range_suggester,
|
||||||
|
build_preset_spans_suggester,
|
||||||
|
)
|
||||||
|
from .pipeline.entityruler import (
|
||||||
|
make_entity_ruler_scorer as make_entityruler_scorer,
|
||||||
|
)
|
||||||
from .pipeline.sentencizer import senter_score as make_sentencizer_scorer
|
from .pipeline.sentencizer import senter_score as make_sentencizer_scorer
|
||||||
from .pipeline.senter import make_senter_scorer
|
from .pipeline.senter import make_senter_scorer
|
||||||
from .pipeline.textcat import make_textcat_scorer
|
from .pipeline.textcat import make_textcat_scorer
|
||||||
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
|
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
|
||||||
|
|
||||||
# Register miscellaneous components
|
# Register miscellaneous components
|
||||||
registry.misc("spacy.first_longest_spans_filter.v1")(make_first_longest_spans_filter)
|
registry.misc("spacy.first_longest_spans_filter.v1")(
|
||||||
|
make_first_longest_spans_filter
|
||||||
|
)
|
||||||
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
|
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
|
||||||
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
|
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
|
||||||
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
|
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
|
||||||
|
@ -47,7 +57,16 @@ def populate_registry() -> None:
|
||||||
# For the registry that was previously decorated
|
# For the registry that was previously decorated
|
||||||
|
|
||||||
# Import ML components that use registry
|
# Import ML components that use registry
|
||||||
from .ml.models.tok2vec import tok2vec_listener_v1, build_hash_embed_cnn_tok2vec, build_Tok2Vec_model, MultiHashEmbed, CharacterEmbed, MaxoutWindowEncoder, MishWindowEncoder, BiLSTMEncoder
|
from .ml.models.tok2vec import (
|
||||||
|
tok2vec_listener_v1,
|
||||||
|
build_hash_embed_cnn_tok2vec,
|
||||||
|
build_Tok2Vec_model,
|
||||||
|
MultiHashEmbed,
|
||||||
|
CharacterEmbed,
|
||||||
|
MaxoutWindowEncoder,
|
||||||
|
MishWindowEncoder,
|
||||||
|
BiLSTMEncoder,
|
||||||
|
)
|
||||||
|
|
||||||
# Register scorers
|
# Register scorers
|
||||||
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
|
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
|
||||||
|
@ -58,8 +77,12 @@ def populate_registry() -> None:
|
||||||
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
|
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
|
||||||
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
|
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
|
||||||
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
|
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
|
||||||
registry.scorers("spacy.textcat_multilabel_scorer.v1")(make_textcat_multilabel_scorer)
|
registry.scorers("spacy.textcat_multilabel_scorer.v1")(
|
||||||
registry.scorers("spacy.textcat_multilabel_scorer.v2")(make_textcat_multilabel_scorer)
|
make_textcat_multilabel_scorer
|
||||||
|
)
|
||||||
|
registry.scorers("spacy.textcat_multilabel_scorer.v2")(
|
||||||
|
make_textcat_multilabel_scorer
|
||||||
|
)
|
||||||
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
|
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
|
||||||
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
|
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
|
||||||
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
|
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
|
||||||
|
@ -88,10 +111,25 @@ def register_factories() -> None:
|
||||||
the registrations that were previously done with @Language.factory decorators.
|
the registrations that were previously done with @Language.factory decorators.
|
||||||
"""
|
"""
|
||||||
global FACTORIES_REGISTERED
|
global FACTORIES_REGISTERED
|
||||||
|
|
||||||
|
from .language import Language
|
||||||
|
from .pipeline.sentencizer import Sentencizer
|
||||||
|
|
||||||
if FACTORIES_REGISTERED:
|
if FACTORIES_REGISTERED:
|
||||||
return
|
return
|
||||||
|
|
||||||
from .language import Language
|
# TODO: We seem to still get cycle problems with these functions defined in Cython. We need
|
||||||
|
# a Python _factories module maybe?
|
||||||
|
def make_sentencizer(
|
||||||
|
nlp: Language,
|
||||||
|
name: str,
|
||||||
|
punct_chars: Optional[List[str]],
|
||||||
|
overwrite: bool,
|
||||||
|
scorer: Optional[Callable],
|
||||||
|
):
|
||||||
|
return Sentencizer(
|
||||||
|
name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer
|
||||||
|
)
|
||||||
|
|
||||||
# Import factory default configurations
|
# Import factory default configurations
|
||||||
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
|
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
|
||||||
|
@ -99,7 +137,11 @@ def register_factories() -> None:
|
||||||
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||||
from .pipeline.senter import DEFAULT_SENTER_MODEL
|
from .pipeline.senter import DEFAULT_SENTER_MODEL
|
||||||
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
||||||
from .pipeline.spancat import DEFAULT_SPANCAT_MODEL, DEFAULT_SPANCAT_SINGLELABEL_MODEL, DEFAULT_SPANS_KEY
|
from .pipeline.spancat import (
|
||||||
|
DEFAULT_SPANCAT_MODEL,
|
||||||
|
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||||
|
DEFAULT_SPANS_KEY,
|
||||||
|
)
|
||||||
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
||||||
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
||||||
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
||||||
|
@ -120,7 +162,10 @@ def register_factories() -> None:
|
||||||
from .pipeline.senter import make_senter
|
from .pipeline.senter import make_senter
|
||||||
from .pipeline.morphologizer import make_morphologizer
|
from .pipeline.morphologizer import make_morphologizer
|
||||||
from .pipeline.spancat import make_spancat, make_spancat_singlelabel
|
from .pipeline.spancat import make_spancat, make_spancat_singlelabel
|
||||||
from .pipeline.span_ruler import make_entity_ruler as make_span_entity_ruler, make_span_ruler
|
from .pipeline.span_ruler import (
|
||||||
|
make_entity_ruler as make_span_entity_ruler,
|
||||||
|
make_span_ruler,
|
||||||
|
)
|
||||||
from .pipeline.edit_tree_lemmatizer import make_edit_tree_lemmatizer
|
from .pipeline.edit_tree_lemmatizer import make_edit_tree_lemmatizer
|
||||||
from .pipeline.textcat_multilabel import make_multilabel_textcat
|
from .pipeline.textcat_multilabel import make_multilabel_textcat
|
||||||
from .pipeline.span_finder import make_span_finder
|
from .pipeline.span_finder import make_span_finder
|
||||||
|
@ -128,7 +173,8 @@ def register_factories() -> None:
|
||||||
from .pipeline.dep_parser import make_parser, make_beam_parser
|
from .pipeline.dep_parser import make_parser, make_beam_parser
|
||||||
from .pipeline.tagger import make_tagger
|
from .pipeline.tagger import make_tagger
|
||||||
from .pipeline.multitask import make_nn_labeller
|
from .pipeline.multitask import make_nn_labeller
|
||||||
from .pipeline.sentencizer import make_sentencizer
|
|
||||||
|
# from .pipeline.sentencizer import make_sentencizer
|
||||||
|
|
||||||
# Register factories using the same pattern as Language.factory decorator
|
# Register factories using the same pattern as Language.factory decorator
|
||||||
# We use Language.factory()() pattern which exactly mimics the decorator
|
# We use Language.factory()() pattern which exactly mimics the decorator
|
||||||
|
@ -243,14 +289,18 @@ def register_factories() -> None:
|
||||||
Language.factory(
|
Language.factory(
|
||||||
"tok2vec",
|
"tok2vec",
|
||||||
assigns=["doc.tensor"],
|
assigns=["doc.tensor"],
|
||||||
default_config={"model": DEFAULT_TOK2VEC_MODEL}
|
default_config={"model": DEFAULT_TOK2VEC_MODEL},
|
||||||
)(make_tok2vec)
|
)(make_tok2vec)
|
||||||
|
|
||||||
# senter
|
# senter
|
||||||
Language.factory(
|
Language.factory(
|
||||||
"senter",
|
"senter",
|
||||||
assigns=["token.is_sent_start"],
|
assigns=["token.is_sent_start"],
|
||||||
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
default_config={
|
||||||
|
"model": DEFAULT_SENTER_MODEL,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||||
|
},
|
||||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||||
)(make_senter)
|
)(make_senter)
|
||||||
|
|
||||||
|
@ -263,9 +313,13 @@ def register_factories() -> None:
|
||||||
"overwrite": True,
|
"overwrite": True,
|
||||||
"extend": False,
|
"extend": False,
|
||||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
||||||
"label_smoothing": 0.0
|
"label_smoothing": 0.0,
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"pos_acc": 0.5,
|
||||||
|
"morph_acc": 0.5,
|
||||||
|
"morph_per_feat": None,
|
||||||
},
|
},
|
||||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
|
|
||||||
)(make_morphologizer)
|
)(make_morphologizer)
|
||||||
|
|
||||||
# spancat
|
# spancat
|
||||||
|
@ -413,7 +467,12 @@ def register_factories() -> None:
|
||||||
"incorrect_spans_key": None,
|
"incorrect_spans_key": None,
|
||||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||||
},
|
},
|
||||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
)(make_ner)
|
)(make_ner)
|
||||||
|
|
||||||
# beam_ner
|
# beam_ner
|
||||||
|
@ -430,7 +489,12 @@ def register_factories() -> None:
|
||||||
"incorrect_spans_key": None,
|
"incorrect_spans_key": None,
|
||||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||||
},
|
},
|
||||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
default_score_weights={
|
||||||
|
"ents_f": 1.0,
|
||||||
|
"ents_p": 0.0,
|
||||||
|
"ents_r": 0.0,
|
||||||
|
"ents_per_type": None,
|
||||||
|
},
|
||||||
)(make_beam_ner)
|
)(make_beam_ner)
|
||||||
|
|
||||||
# parser
|
# parser
|
||||||
|
@ -484,21 +548,41 @@ def register_factories() -> None:
|
||||||
Language.factory(
|
Language.factory(
|
||||||
"tagger",
|
"tagger",
|
||||||
assigns=["token.tag"],
|
assigns=["token.tag"],
|
||||||
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
|
default_config={
|
||||||
default_score_weights={"tag_acc": 1.0, "pos_acc": 0.0, "tag_micro_p": None, "tag_micro_r": None, "tag_micro_f": None},
|
"model": DEFAULT_TAGGER_MODEL,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
||||||
|
"neg_prefix": "!",
|
||||||
|
"label_smoothing": 0.0,
|
||||||
|
},
|
||||||
|
default_score_weights={
|
||||||
|
"tag_acc": 1.0,
|
||||||
|
"pos_acc": 0.0,
|
||||||
|
"tag_micro_p": None,
|
||||||
|
"tag_micro_r": None,
|
||||||
|
"tag_micro_f": None,
|
||||||
|
},
|
||||||
)(make_tagger)
|
)(make_tagger)
|
||||||
|
|
||||||
# nn_labeller
|
# nn_labeller
|
||||||
Language.factory(
|
Language.factory(
|
||||||
"nn_labeller",
|
"nn_labeller",
|
||||||
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
|
default_config={
|
||||||
|
"labels": None,
|
||||||
|
"target": "dep_tag_offset",
|
||||||
|
"model": DEFAULT_MT_MODEL,
|
||||||
|
},
|
||||||
)(make_nn_labeller)
|
)(make_nn_labeller)
|
||||||
|
|
||||||
# sentencizer
|
# sentencizer
|
||||||
Language.factory(
|
Language.factory(
|
||||||
"sentencizer",
|
"sentencizer",
|
||||||
assigns=["token.is_sent_start", "doc.sents"],
|
assigns=["token.is_sent_start", "doc.sents"],
|
||||||
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
default_config={
|
||||||
|
"punct_chars": None,
|
||||||
|
"overwrite": False,
|
||||||
|
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||||
|
},
|
||||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||||
)(make_sentencizer)
|
)(make_sentencizer)
|
||||||
|
|
||||||
|
|
|
@ -479,3 +479,4 @@ NAMES = [it[0] for it in sorted(IDS.items(), key=sort_nums)]
|
||||||
# (which is generating an enormous amount of C++ in Cython 0.24+)
|
# (which is generating an enormous amount of C++ in Cython 0.24+)
|
||||||
# We keep the enum cdef, and just make sure the names are available to Python
|
# We keep the enum cdef, and just make sure the names are available to Python
|
||||||
locals().update(IDS)
|
locals().update(IDS)
|
||||||
|
|
||||||
|
|
|
@ -87,7 +87,7 @@ def entity_linker():
|
||||||
|
|
||||||
|
|
||||||
objects_to_test = (
|
objects_to_test = (
|
||||||
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
|
[nlp, vectors, custom_pipe, tagger, entity_linker],
|
||||||
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -101,8 +101,9 @@ def write_obj_and_catch_warnings(obj):
|
||||||
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
|
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
|
@pytest.mark.parametrize("obj_factory", objects_to_test[0], ids=objects_to_test[1])
|
||||||
def test_to_disk_resource_warning(obj):
|
def test_to_disk_resource_warning(obj_factory):
|
||||||
|
obj = obj_factory()
|
||||||
warnings_list = write_obj_and_catch_warnings(obj)
|
warnings_list = write_obj_and_catch_warnings(obj)
|
||||||
assert len(warnings_list) == 0
|
assert len(warnings_list) == 0
|
||||||
|
|
||||||
|
@ -139,7 +140,7 @@ def test_save_and_load_knowledge_base():
|
||||||
|
|
||||||
class TestToDiskResourceWarningUnittest(TestCase):
|
class TestToDiskResourceWarningUnittest(TestCase):
|
||||||
def test_resource_warning(self):
|
def test_resource_warning(self):
|
||||||
scenarios = zip(*objects_to_test)
|
scenarios = zip(*[x() for x in objects_to_test]) # type: ignore
|
||||||
|
|
||||||
for scenario in scenarios:
|
for scenario in scenarios:
|
||||||
with self.subTest(msg=scenario[1]):
|
with self.subTest(msg=scenario[1]):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user