Merge remote-tracking branch 'upstream/master' into chore/update-v4-from-master

This commit is contained in:
Adriane Boyd 2022-08-24 07:15:41 +02:00
commit c44d243f25
51 changed files with 853 additions and 166 deletions

View File

@ -54,12 +54,12 @@ steps:
condition: eq(${{ parameters.gpu }}, true)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy
${{ parameters.prefix }} python -m pytest --pyargs spacy -W error
displayName: "Run CPU tests"
condition: eq(${{ parameters.gpu }}, false)
- script: |
${{ parameters.prefix }} python -m pytest --pyargs spacy -p spacy.tests.enable_gpu
${{ parameters.prefix }} python -m pytest --pyargs spacy -W error -p spacy.tests.enable_gpu
displayName: "Run GPU tests"
condition: eq(${{ parameters.gpu }}, true)

View File

@ -1,13 +0,0 @@
# Configuration for probot-no-response - https://github.com/probot/no-response
# Number of days of inactivity before an Issue is closed for lack of response
daysUntilClose: 14
# Label requiring a response
responseRequiredLabel: more-info-needed
# Comment to post when closing an Issue for lack of response. Set to `false` to disable
closeComment: >
This issue has been automatically closed because there has been no response
to a request for more information from the original author. With only the
information that is currently in the issue, there's not enough information
to take action. If you're the original author, feel free to reopen the issue
if you have or find the answers needed to investigate further.

View File

@ -15,7 +15,7 @@ jobs:
issue-manager:
runs-on: ubuntu-latest
steps:
- uses: tiangolo/issue-manager@0.2.1
- uses: tiangolo/issue-manager@0.4.0
with:
token: ${{ secrets.GITHUB_TOKEN }}
config: >
@ -25,5 +25,11 @@ jobs:
"message": "This issue has been automatically closed because it was answered and there was no follow-up discussion.",
"remove_label_on_comment": true,
"remove_label_on_close": true
},
"more-info-needed": {
"delay": "P7D",
"message": "This issue has been automatically closed because there has been no response to a request for more information from the original author. With only the information that is currently in the issue, there's not enough information to take action. If you're the original author, feel free to reopen the issue if you have or find the answers needed to investigate further.",
"remove_label_on_comment": true,
"remove_label_on_close": true
}
}

View File

@ -32,7 +32,7 @@ jobs:
versionSpec: "3.7"
- script: |
pip install flake8==3.9.2
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
displayName: "flake8"
- job: "Test"

View File

@ -191,6 +191,8 @@ def load_model(name: str) -> "Language":
...
```
Note that we typically put the `from typing` import statements on the first line(s) of the Python module.
## Structuring logic
### Positional and keyword arguments
@ -275,6 +277,27 @@ If you have to use `try`/`except`, make sure to only include what's **absolutely
+ return [v.strip() for v in value.split(",")]
```
### Numeric comparisons
For numeric comparisons, as a general rule we always use `<` and `>=` and avoid the usage of `<=` and `>`. This is to ensure we consistently
apply inclusive lower bounds and exclusive upper bounds, helping to prevent off-by-one errors.
One exception to this rule is the ternary case. With a chain like
```python
if value >= 0 and value < max:
...
```
it's fine to rewrite this to the shorter form
```python
if 0 <= value < max:
...
```
even though this requires the usage of the `<=` operator.
### Iteration and comprehensions
We generally avoid using built-in functions like `filter` or `map` in favor of list or generator comprehensions.
@ -451,7 +474,7 @@ spaCy uses the [`pytest`](http://doc.pytest.org/) framework for testing. Tests f
When adding tests, make sure to use descriptive names and only test for one behavior at a time. Tests should be grouped into modules dedicated to the same type of functionality and some test modules are organized as directories of test files related to the same larger area of the library, e.g. `matcher` or `tokenizer`.
Regression tests are tests that refer to bugs reported in specific issues. They should live in the relevant module of the test suite, named according to the issue number (e.g., `test_issue1234.py`), and [marked](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers) appropriately (e.g. `@pytest.mark.issue(1234)`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first.
Regression tests are tests that refer to bugs reported in specific issues. They should live in the relevant module of the test suite, named according to the issue number (e.g., `test_issue1234.py`), and [marked](https://docs.pytest.org/en/6.2.x/example/markers.html#working-with-custom-markers) appropriately (e.g. `@pytest.mark.issue(1234)`). This system allows us to relate tests for specific bugs back to the original reported issue, which is especially useful if we introduce a regression and a previously passing regression tests suddenly fails again. When fixing a bug, it's often useful to create a regression test for it first.
The test suite also provides [fixtures](https://github.com/explosion/spaCy/blob/master/spacy/tests/conftest.py) for different language tokenizers that can be used as function arguments of the same name and will be passed in automatically. Those should only be used for tests related to those specific languages. We also have [test utility functions](https://github.com/explosion/spaCy/blob/master/spacy/tests/util.py) for common operations, like creating a temporary file.

View File

@ -7,6 +7,7 @@ import typer
from ._util import app, Arg, Opt, WHEEL_SUFFIX, SDIST_SUFFIX
from .. import about
from ..util import is_package, get_minor_version, run_command
from ..util import is_prerelease_version
from ..errors import OLD_MODEL_SHORTCUTS
@ -74,7 +75,10 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) -
def get_compatibility() -> dict:
version = get_minor_version(about.__version__)
if is_prerelease_version(about.__version__):
version: Optional[str] = about.__version__
else:
version = get_minor_version(about.__version__)
r = requests.get(about.__compatibility__)
if r.status_code != 200:
msg.fail(

View File

@ -123,7 +123,8 @@ def app(environ, start_response):
def parse_deps(orig_doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
"""Generate dependency parse in {'words': [], 'arcs': []} format.
doc (Doc): Document do parse.
orig_doc (Doc): Document to parse.
options (Dict[str, Any]): Dependency parse specific visualisation options.
RETURNS (dict): Generated dependency parse keyed by words and arcs.
"""
doc = Doc(orig_doc.vocab).from_bytes(
@ -209,7 +210,7 @@ def parse_ents(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
def parse_spans(doc: Doc, options: Dict[str, Any] = {}) -> Dict[str, Any]:
"""Generate spans in [{start: i, end: i, label: 'label'}] format.
"""Generate spans in [{start_token: i, end_token: i, label: 'label'}] format.
doc (Doc): Document to parse.
options (Dict[str, any]): Span-specific visualisation options.

View File

@ -16,8 +16,8 @@ def setup_default_warnings():
filter_warning("ignore", error_msg="numpy.dtype size changed") # noqa
filter_warning("ignore", error_msg="numpy.ufunc size changed") # noqa
# warn about entity_ruler & matcher having no patterns only once
for pipe in ["matcher", "entity_ruler"]:
# warn about entity_ruler, span_ruler & matcher having no patterns only once
for pipe in ["matcher", "entity_ruler", "span_ruler"]:
filter_warning("once", error_msg=Warnings.W036.format(name=pipe))
# warn once about lemmatizer without required POS
@ -389,7 +389,7 @@ class Errors(metaclass=ErrorsWithCodes):
"consider using doc.spans instead.")
E106 = ("Can't find `doc._.{attr}` attribute specified in the underscore "
"settings: {opts}")
E107 = ("Value of `doc._.{attr}` is not JSON-serializable: {value}")
E107 = ("Value of custom attribute `{attr}` is not JSON-serializable: {value}")
E109 = ("Component '{name}' could not be run. Did you forget to "
"call `initialize()`?")
E110 = ("Invalid displaCy render wrapper. Expected callable, got: {obj}")
@ -535,11 +535,12 @@ class Errors(metaclass=ErrorsWithCodes):
E198 = ("Unable to return {n} most similar vectors for the current vectors "
"table, which contains {n_rows} vectors.")
E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.")
E200 = ("Can't yet set {attr} from Span. Vote for this feature on the "
"issue tracker: http://github.com/explosion/spaCy/issues")
E200 = ("Can't set {attr} from Span.")
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
"not permitted in factory names.")
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
"permit overlapping spans.")
E855 = ("Invalid {obj}: {obj} is not from the same doc.")

View File

@ -3,7 +3,7 @@ from ..punctuation import TOKENIZER_INFIXES as BASE_TOKENIZER_INFIXES
_infixes = (
["·", "", "\(", "\)"]
["·", "", r"\(", r"\)"]
+ [r"(?<=[0-9])~(?=[0-9-])"]
+ LIST_QUOTES
+ BASE_TOKENIZER_INFIXES

18
spacy/lang/lg/__init__.py Normal file
View File

@ -0,0 +1,18 @@
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES
from ...language import Language, BaseDefaults
class LugandaDefaults(BaseDefaults):
lex_attr_getters = LEX_ATTRS
infixes = TOKENIZER_INFIXES
stop_words = STOP_WORDS
class Luganda(Language):
lang = "lg"
Defaults = LugandaDefaults
__all__ = ["Luganda"]

17
spacy/lang/lg/examples.py Normal file
View File

@ -0,0 +1,17 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.lg.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Mpa ebyafaayo ku byalo Nakatu ne Nkajja",
"Okuyita Ttembo kitegeeza kugwa ddalu",
"Ekifumu kino kyali kya mulimu ki?",
"Ekkovu we liyise wayitibwa mukululo",
"Akola mulimu ki oguvaamu ssente?",
"Emisumaali egikomerera embaawo giyitibwa nninga",
"Abooluganda abemmamba ababiri",
"Ekisaawe ky'ebyenjigiriza kya mugaso nnyo",
]

View File

@ -0,0 +1,95 @@
from ...attrs import LIKE_NUM
_num_words = [
"nnooti", # Zero
"zeero", # zero
"emu", # one
"bbiri", # two
"ssatu", # three
"nnya", # four
"ttaano", # five
"mukaaga", # six
"musanvu", # seven
"munaana", # eight
"mwenda", # nine
"kkumi", # ten
"kkumi n'emu", # eleven
"kkumi na bbiri", # twelve
"kkumi na ssatu", # thirteen
"kkumi na nnya", # forteen
"kkumi na ttaano", # fifteen
"kkumi na mukaaga", # sixteen
"kkumi na musanvu", # seventeen
"kkumi na munaana", # eighteen
"kkumi na mwenda", # nineteen
"amakumi abiri", # twenty
"amakumi asatu", # thirty
"amakumi ana", # forty
"amakumi ataano", # fifty
"nkaaga", # sixty
"nsanvu", # seventy
"kinaana", # eighty
"kyenda", # ninety
"kikumi", # hundred
"lukumi", # thousand
"kakadde", # million
"kawumbi", # billion
"kase", # trillion
"katabalika", # quadrillion
"keesedde", # gajillion
"kafukunya", # bazillion
"ekisooka", # first
"ekyokubiri", # second
"ekyokusatu", # third
"ekyokuna", # fourth
"ekyokutaano", # fifith
"ekyomukaaga", # sixth
"ekyomusanvu", # seventh
"eky'omunaana", # eighth
"ekyomwenda", # nineth
"ekyekkumi", # tenth
"ekyekkumi n'ekimu", # eleventh
"ekyekkumi n'ebibiri", # twelveth
"ekyekkumi n'ebisatu", # thirteenth
"ekyekkumi n'ebina", # fourteenth
"ekyekkumi n'ebitaano", # fifteenth
"ekyekkumi n'omukaaga", # sixteenth
"ekyekkumi n'omusanvu", # seventeenth
"ekyekkumi n'omunaana", # eigteenth
"ekyekkumi n'omwenda", # nineteenth
"ekyamakumi abiri", # twentieth
"ekyamakumi asatu", # thirtieth
"ekyamakumi ana", # fortieth
"ekyamakumi ataano", # fiftieth
"ekyenkaaga", # sixtieth
"ekyensanvu", # seventieth
"ekyekinaana", # eightieth
"ekyekyenda", # ninetieth
"ekyekikumi", # hundredth
"ekyolukumi", # thousandth
"ekyakakadde", # millionth
"ekyakawumbi", # billionth
"ekyakase", # trillionth
"ekyakatabalika", # quadrillionth
"ekyakeesedde", # gajillionth
"ekyakafukunya", # bazillionth
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
text_lower = text.lower()
if text_lower in _num_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -0,0 +1,19 @@
from ..char_classes import LIST_ELLIPSES, LIST_ICONS, HYPHENS
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}0-9])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
]
)
TOKENIZER_INFIXES = _infixes

View File

@ -0,0 +1,19 @@
STOP_WORDS = set(
"""
abadde abalala abamu abangi abava ajja ali alina ani anti ateekeddwa atewamu
atya awamu aweebwa ayinza ba baali babadde babalina bajja
bajjanewankubade bali balina bandi bangi bano bateekeddwa baweebwa bayina bebombi beera bibye
bimu bingi bino bo bokka bonna buli bulijjo bulungi bwabwe bwaffe bwayo bwe bwonna bya byabwe
byaffe byebimu byonna ddaa ddala ddi e ebimu ebiri ebweruobulungi ebyo edda ejja ekirala ekyo
endala engeri ennyo era erimu erina ffe ffenna ga gujja gumu gunno guno gwa gwe kaseera kati
kennyini ki kiki kikino kikye kikyo kino kirungi kki ku kubangabyombi kubangaolwokuba kudda
kuva kuwa kwegamba kyaffe kye kyekimuoyo kyekyo kyonna leero liryo lwa lwaki lyabwezaabwe
lyaffe lyange mbadde mingi mpozzi mu mulinaoyina munda mwegyabwe nolwekyo nabadde nabo nandiyagadde
nandiye nanti naye ne nedda neera nga nnyingi nnyini nnyinza nnyo nti nyinza nze oba ojja okudda
okugenda okuggyako okutuusa okuva okuwa oli olina oluvannyuma olwekyobuva omuli ono osobola otya
oyina oyo seetaaga si sinakindi singa talina tayina tebaali tebaalina tebayina terina tetulina
tetuteekeddwa tewali teyalina teyayina tolina tu tuyina tulina tuyina twafuna twetaaga wa wabula
wabweru wadde waggulunnina wakati waliwobangi waliyo wandi wange wano wansi weebwa yabadde yaffe
ye yenna yennyini yina yonna ziba zijja zonna
""".split()
)

View File

@ -40,6 +40,7 @@ def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
span_label = doc.vocab.strings.add("NP")
# Only NOUNS and PRONOUNS matter
end_span = -1
for i, word in enumerate(filter(lambda x: x.pos in [PRON, NOUN], doclike)):
# For NOUNS
# Pick children from syntactic parse (only those with certain dependencies)
@ -58,15 +59,17 @@ def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
children_i = [c.i for c in children] + [word.i]
start_span = min(children_i)
end_span = max(children_i) + 1
yield start_span, end_span, span_label
if start_span >= end_span:
end_span = max(children_i) + 1
yield start_span, end_span, span_label
# PRONOUNS only if it is the subject of a verb
elif word.pos == PRON:
if word.dep in pronoun_deps:
start_span = word.i
end_span = word.i + 1
yield start_span, end_span, span_label
if start_span >= end_span:
end_span = word.i + 1
yield start_span, end_span, span_label
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}

View File

@ -465,6 +465,8 @@ class Language:
"""
if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="factory"))
if "." in name:
raise ValueError(Errors.E853.format(name=name))
if not isinstance(default_config, dict):
err = Errors.E962.format(
style="default config", name=name, cfg_type=type(default_config)
@ -543,8 +545,11 @@ class Language:
DOCS: https://spacy.io/api/language#component
"""
if name is not None and not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="component"))
if name is not None:
if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="component"))
if "." in name:
raise ValueError(Errors.E853.format(name=name))
component_name = name if name is not None else util.get_object_name(func)
def add_component(component_func: "Pipe") -> Callable:

View File

@ -207,7 +207,7 @@ class TokenPatternOperatorSimple(str, Enum):
class TokenPatternOperatorMinMax(ConstrainedStr):
regex = re.compile("^({\d+}|{\d+,\d*}|{\d*,\d+})$")
regex = re.compile(r"^({\d+}|{\d+,\d*}|{\d*,\d+})$")
TokenPatternOperator = Union[TokenPatternOperatorSimple, TokenPatternOperatorMinMax]
@ -514,6 +514,14 @@ class DocJSONSchema(BaseModel):
tokens: List[Dict[StrictStr, Union[StrictStr, StrictInt]]] = Field(
..., title="Token information - ID, start, annotations"
)
_: Optional[Dict[StrictStr, Any]] = Field(
None, title="Any custom data stored in the document's _ attribute"
underscore_doc: Optional[Dict[StrictStr, Any]] = Field(
None,
title="Any custom data stored in the document's _ attribute",
alias="_",
)
underscore_token: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field(
None, title="Any custom data stored in the token's _ attribute"
)
underscore_span: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field(
None, title="Any custom data stored in the span's _ attribute"
)

View File

@ -261,6 +261,11 @@ def lb_tokenizer():
return get_lang_class("lb")().tokenizer
@pytest.fixture(scope="session")
def lg_tokenizer():
return get_lang_class("lg")().tokenizer
@pytest.fixture(scope="session")
def lt_tokenizer():
return get_lang_class("lt")().tokenizer

View File

@ -3,6 +3,7 @@ import weakref
import numpy
from numpy.testing import assert_array_equal
import pytest
import warnings
from thinc.api import NumpyOps, get_current_ops
from spacy.attrs import DEP, ENT_IOB, ENT_TYPE, HEAD, IS_ALPHA, MORPH, POS
@ -529,9 +530,9 @@ def test_doc_from_array_sent_starts(en_vocab):
# no warning using default attrs
attrs = doc._get_array_attrs()
arr = doc.to_array(attrs)
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
new_doc.from_array(attrs, arr)
assert len(record) == 0
# only SENT_START uses SENT_START
attrs = [SENT_START]
arr = doc.to_array(attrs)

View File

@ -1,12 +1,15 @@
import pytest
import spacy
from spacy import schemas
from spacy.tokens import Doc, Span
from spacy.tokens import Doc, Span, Token
import srsly
from .test_underscore import clean_underscore # noqa: F401
@pytest.fixture()
def doc(en_vocab):
words = ["c", "d", "e"]
spaces = [True, True, True]
pos = ["VERB", "NOUN", "NOUN"]
tags = ["VBP", "NN", "NN"]
heads = [0, 0, 1]
@ -17,6 +20,7 @@ def doc(en_vocab):
return Doc(
en_vocab,
words=words,
spaces=spaces,
pos=pos,
tags=tags,
heads=heads,
@ -45,6 +49,47 @@ def doc_without_deps(en_vocab):
)
@pytest.fixture()
def doc_json():
return {
"text": "c d e ",
"ents": [{"start": 2, "end": 3, "label": "ORG"}],
"sents": [{"start": 0, "end": 5}],
"tokens": [
{
"id": 0,
"start": 0,
"end": 1,
"tag": "VBP",
"pos": "VERB",
"morph": "Feat1=A",
"dep": "ROOT",
"head": 0,
},
{
"id": 1,
"start": 2,
"end": 3,
"tag": "NN",
"pos": "NOUN",
"morph": "Feat1=B",
"dep": "dobj",
"head": 0,
},
{
"id": 2,
"start": 4,
"end": 5,
"tag": "NN",
"pos": "NOUN",
"morph": "Feat1=A|Feat2=D",
"dep": "dobj",
"head": 1,
},
],
}
def test_doc_to_json(doc):
json_doc = doc.to_json()
assert json_doc["text"] == "c d e "
@ -56,7 +101,8 @@ def test_doc_to_json(doc):
assert json_doc["ents"][0]["start"] == 2 # character offset!
assert json_doc["ents"][0]["end"] == 3 # character offset!
assert json_doc["ents"][0]["label"] == "ORG"
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
def test_doc_to_json_underscore(doc):
@ -64,11 +110,96 @@ def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
def test_doc_to_json_with_token_span_attributes(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
Token.set_extension("token_test", default=False)
Span.set_extension("span_test", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
doc[0:1]._.span_test = "span_attribute"
doc[0]._.token_test = 117
doc.spans["span_group"] = [doc[0:1]]
json_doc = doc.to_json(
underscore=["json_test1", "json_test2", "token_test", "span_test"]
)
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["token_test"]["value"] == 117
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
def test_doc_to_json_with_custom_user_data(doc):
Doc.set_extension("json_test", default=False)
Token.set_extension("token_test", default=False)
Span.set_extension("span_test", default=False)
doc._.json_test = "hello world"
doc[0:1]._.span_test = "span_attribute"
doc[0]._.token_test = 117
json_doc = doc.to_json(underscore=["json_test", "token_test", "span_test"])
doc.user_data["user_data_test"] = 10
doc.user_data[("user_data_test2", True)] = 10
assert "_" in json_doc
assert json_doc["_"]["json_test"] == "hello world"
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["token_test"]["value"] == 117
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
def test_doc_to_json_with_token_span_same_identifier(doc):
Doc.set_extension("my_ext", default=False)
Token.set_extension("my_ext", default=False)
Span.set_extension("my_ext", default=False)
doc._.my_ext = "hello world"
doc[0:1]._.my_ext = "span_attribute"
doc[0]._.my_ext = 117
json_doc = doc.to_json(underscore=["my_ext"])
assert "_" in json_doc
assert json_doc["_"]["my_ext"] == "hello world"
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["my_ext"]["value"] == 117
assert json_doc["underscore_span"]["my_ext"]["value"] == "span_attribute"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
def test_doc_to_json_with_token_attributes_missing(doc):
Token.set_extension("token_test", default=False)
Span.set_extension("span_test", default=False)
doc[0:1]._.span_test = "span_attribute"
doc[0]._.token_test = 117
json_doc = doc.to_json(underscore=["span_test"])
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert "token_test" not in json_doc["underscore_token"]
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
def test_doc_to_json_underscore_error_attr(doc):
@ -94,11 +225,29 @@ def test_doc_to_json_span(doc):
assert len(json_doc["spans"]) == 1
assert len(json_doc["spans"]["test"]) == 2
assert json_doc["spans"]["test"][0]["start"] == 0
assert not schemas.validate(schemas.DocJSONSchema, json_doc)
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
def test_json_to_doc(doc):
new_doc = Doc(doc.vocab).from_json(doc.to_json(), validate=True)
json_doc = doc.to_json()
json_doc = srsly.json_loads(srsly.json_dumps(json_doc))
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert new_doc.text == doc.text == "c d e "
assert len(new_doc) == len(doc) == 3
assert new_doc[0].pos == doc[0].pos
assert new_doc[0].tag == doc[0].tag
assert new_doc[0].dep == doc[0].dep
assert new_doc[0].head.idx == doc[0].head.idx
assert new_doc[0].lemma == doc[0].lemma
assert len(new_doc.ents) == 1
assert new_doc.ents[0].start == 1
assert new_doc.ents[0].end == 2
assert new_doc.ents[0].label_ == "ORG"
assert doc.to_bytes() == new_doc.to_bytes()
def test_json_to_doc_compat(doc, doc_json):
new_doc = Doc(doc.vocab).from_json(doc_json, validate=True)
new_tokens = [token for token in new_doc]
assert new_doc.text == doc.text == "c d e "
assert len(new_tokens) == len([token for token in doc]) == 3
@ -114,11 +263,8 @@ def test_json_to_doc(doc):
def test_json_to_doc_underscore(doc):
if not Doc.has_extension("json_test1"):
Doc.set_extension("json_test1", default=False)
if not Doc.has_extension("json_test2"):
Doc.set_extension("json_test2", default=False)
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
@ -126,6 +272,34 @@ def test_json_to_doc_underscore(doc):
assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)])
assert new_doc._.json_test1 == "hello world"
assert new_doc._.json_test2 == [1, 2, 3]
assert doc.to_bytes() == new_doc.to_bytes()
def test_json_to_doc_with_token_span_attributes(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
Token.set_extension("token_test", default=False)
Span.set_extension("span_test", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
doc[0:1]._.span_test = "span_attribute"
doc[0]._.token_test = 117
json_doc = doc.to_json(
underscore=["json_test1", "json_test2", "token_test", "span_test"]
)
json_doc = srsly.json_loads(srsly.json_dumps(json_doc))
new_doc = Doc(doc.vocab).from_json(json_doc, validate=True)
assert all([new_doc.has_extension(f"json_test{i}") for i in range(1, 3)])
assert new_doc._.json_test1 == "hello world"
assert new_doc._.json_test2 == [1, 2, 3]
assert new_doc[0]._.token_test == 117
assert new_doc[0:1]._.span_test == "span_attribute"
assert new_doc.user_data == doc.user_data
assert new_doc.to_bytes(exclude=["user_data"]) == doc.to_bytes(
exclude=["user_data"]
)
def test_json_to_doc_spans(doc):

View File

View File

@ -0,0 +1,15 @@
import pytest
LG_BASIC_TOKENIZATION_TESTS = [
(
"Abooluganda abemmamba ababiri",
["Abooluganda", "abemmamba", "ababiri"],
),
]
@pytest.mark.parametrize("text,expected_tokens", LG_BASIC_TOKENIZATION_TESTS)
def test_lg_tokenizer_basic(lg_tokenizer, text, expected_tokens):
tokens = lg_tokenizer(text)
token_list = [token.text for token in tokens if not token.is_space]
assert expected_tokens == token_list

View File

@ -1,5 +1,6 @@
from spacy.tokens import Doc
import pytest
from spacy.tokens import Doc
from spacy.util import filter_spans
@pytest.fixture
@ -207,3 +208,18 @@ def test_chunking(nl_sample, nl_reference_chunking):
"""
chunks = [s.text.lower() for s in nl_sample.noun_chunks]
assert chunks == nl_reference_chunking
@pytest.mark.issue(10846)
def test_no_overlapping_chunks(nl_vocab):
# fmt: off
doc = Doc(
nl_vocab,
words=["Dit", "programma", "wordt", "beschouwd", "als", "'s", "werelds", "eerste", "computerprogramma"],
deps=["det", "nsubj:pass", "aux:pass", "ROOT", "mark", "det", "fixed", "amod", "xcomp"],
heads=[1, 3, 3, 3, 8, 8, 5, 8, 3],
pos=["DET", "NOUN", "AUX", "VERB", "SCONJ", "DET", "NOUN", "ADJ", "NOUN"],
)
# fmt: on
chunks = list(doc.noun_chunks)
assert filter_spans(chunks) == chunks

View File

@ -2,6 +2,9 @@ import pytest
from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_ru_doc_lemmatization(ru_lemmatizer):
words = ["мама", "мыла", "раму"]
pos = ["NOUN", "VERB", "NOUN"]

View File

@ -1,6 +1,10 @@
import pytest
from spacy.tokens import Doc
pytestmark = pytest.mark.filterwarnings("ignore::DeprecationWarning")
def test_uk_lemmatizer(uk_lemmatizer):
"""Check that the default uk lemmatizer runs."""
doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"])

View File

@ -1,4 +1,5 @@
import pytest
import warnings
import srsly
from mock import Mock
@ -344,13 +345,13 @@ def test_phrase_matcher_validation(en_vocab):
matcher.add("TEST1", [doc1])
with pytest.warns(UserWarning):
matcher.add("TEST2", [doc2])
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST3", [doc3])
assert not record.list
matcher = PhraseMatcher(en_vocab, attr="POS", validate=True)
with pytest.warns(None) as record:
with warnings.catch_warnings():
warnings.simplefilter("error")
matcher.add("TEST4", [doc2])
assert not record.list
def test_attr_validation(en_vocab):

View File

@ -1048,6 +1048,10 @@ def test_no_gold_ents(patterns):
for eg in train_examples:
eg.predicted = ruler(eg.predicted)
# Entity ruler is no longer needed (initialization below wipes out the
# patterns and causes warnings)
nlp.remove_pipe("entity_ruler")
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)

View File

@ -659,3 +659,14 @@ def test_multiprocessing_gpu_warning(nlp2, texts):
# Trigger multi-processing.
for _ in docs:
pass
def test_dot_in_factory_names(nlp):
Language.component("my_evil_component", func=evil_component)
nlp.add_pipe("my_evil_component")
with pytest.raises(ValueError, match="not permitted"):
Language.component("my.evil.component.v1", func=evil_component)
with pytest.raises(ValueError, match="not permitted"):
Language.factory("my.evil.component.v1", func=evil_component)

View File

@ -431,3 +431,41 @@ def test_Example_aligned_whitespace(en_vocab):
example = Example(predicted, reference)
assert example.get_aligned("TAG", as_string=True) == tags
@pytest.mark.issue("11260")
def test_issue11260():
annots = {
"words": ["I", "like", "New", "York", "."],
"spans": {
"cities": [(7, 15, "LOC", "")],
"people": [(0, 1, "PERSON", "")],
},
}
vocab = Vocab()
predicted = Doc(vocab, words=annots["words"])
example = Example.from_dict(predicted, annots)
assert len(example.reference.spans["cities"]) == 1
assert len(example.reference.spans["people"]) == 1
output_dict = example.to_dict()
assert "spans" in output_dict["doc_annotation"]
assert output_dict["doc_annotation"]["spans"]["cities"] == annots["spans"]["cities"]
assert output_dict["doc_annotation"]["spans"]["people"] == annots["spans"]["people"]
output_example = Example.from_dict(predicted, output_dict)
assert len(output_example.reference.spans["cities"]) == len(
example.reference.spans["cities"]
)
assert len(output_example.reference.spans["people"]) == len(
example.reference.spans["people"]
)
for span in example.reference.spans["cities"]:
assert span.label_ == "LOC"
assert span.text == "New York"
assert span.start_char == 7
for span in example.reference.spans["people"]:
assert span.label_ == "PERSON"
assert span.text == "I"
assert span.start_char == 0

View File

@ -1608,13 +1608,30 @@ cdef class Doc:
ents.append(char_span)
self.ents = ents
# Add custom attributes. Note that only Doc extensions are currently considered, Token and Span extensions are
# not yet supported.
# Add custom attributes for the whole Doc object.
for attr in doc_json.get("_", {}):
if not Doc.has_extension(attr):
Doc.set_extension(attr)
self._.set(attr, doc_json["_"][attr])
if doc_json.get("underscore_token", {}):
for token_attr in doc_json["underscore_token"]:
token_start = doc_json["underscore_token"][token_attr]["token_start"]
value = doc_json["underscore_token"][token_attr]["value"]
if not Token.has_extension(token_attr):
Token.set_extension(token_attr)
self[token_start]._.set(token_attr, value)
if doc_json.get("underscore_span", {}):
for span_attr in doc_json["underscore_span"]:
token_start = doc_json["underscore_span"][span_attr]["token_start"]
token_end = doc_json["underscore_span"][span_attr]["token_end"]
value = doc_json["underscore_span"][span_attr]["value"]
if not Span.has_extension(span_attr):
Span.set_extension(span_attr)
self[token_start:token_end]._.set(span_attr, value)
return self
def to_json(self, underscore=None):
@ -1656,20 +1673,40 @@ cdef class Doc:
for span_group in self.spans:
data["spans"][span_group] = []
for span in self.spans[span_group]:
span_data = {
"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_
}
span_data = {"start": span.start_char, "end": span.end_char, "label": span.label_, "kb_id": span.kb_id_}
data["spans"][span_group].append(span_data)
if underscore:
data["_"] = {}
user_keys = set()
if self.user_data:
data["_"] = {}
data["underscore_token"] = {}
data["underscore_span"] = {}
for data_key in self.user_data:
if type(data_key) == tuple and len(data_key) >= 4 and data_key[0] == "._.":
attr = data_key[1]
start = data_key[2]
end = data_key[3]
if attr in underscore:
user_keys.add(attr)
value = self.user_data[data_key]
if not srsly.is_json_serializable(value):
raise ValueError(Errors.E107.format(attr=attr, value=repr(value)))
# Check if doc attribute
if start is None:
data["_"][attr] = value
# Check if token attribute
elif end is None:
if attr not in data["underscore_token"]:
data["underscore_token"][attr] = {"token_start": start, "value": value}
# Else span attribute
else:
if attr not in data["underscore_span"]:
data["underscore_span"][attr] = {"token_start": start, "token_end": end, "value": value}
for attr in underscore:
if not self.has_extension(attr):
if attr not in user_keys:
raise ValueError(Errors.E106.format(attr=attr, opts=underscore))
value = self._.get(attr)
if not srsly.is_json_serializable(value):
raise ValueError(Errors.E107.format(attr=attr, value=repr(value)))
data["_"][attr] = value
return data
def to_utf8_array(self, int nr_char=-1):

View File

@ -361,6 +361,7 @@ cdef class Example:
"doc_annotation": {
"cats": dict(self.reference.cats),
"entities": doc_to_biluo_tags(self.reference),
"spans": self._spans_to_dict(),
"links": self._links_to_dict()
},
"token_annotation": {
@ -376,6 +377,18 @@ cdef class Example:
}
}
def _spans_to_dict(self):
span_dict = {}
for key in self.reference.spans:
span_tuples = []
for span in self.reference.spans[key]:
span_tuple = (span.start_char, span.end_char, span.label_, span.kb_id_)
span_tuples.append(span_tuple)
span_dict[key] = span_tuples
return span_dict
def _links_to_dict(self):
links = {}
for ent in self.reference.ents:

View File

@ -337,3 +337,5 @@ def ensure_shape(vectors_loc):
# store all the results in a list in memory
lines2 = open_file(vectors_loc)
yield from lines2
lines2.close()
lines.close()

View File

@ -795,6 +795,15 @@ def get_model_lower_version(constraint: str) -> Optional[str]:
return None
def is_prerelease_version(version: str) -> bool:
"""Check whether a version is a prerelease version.
version (str): The version, e.g. "3.0.0.dev1".
RETURNS (bool): Whether the version is a prerelease version.
"""
return Version(version).is_prerelease
def get_base_version(version: str) -> str:
"""Generate the base version without any prerelease identifiers.

View File

@ -395,12 +395,13 @@ file to keep track of your settings and hyperparameters and your own
> "pos": List[str],
> "morphs": List[str],
> "sent_starts": List[Optional[bool]],
> "deps": List[string],
> "deps": List[str],
> "heads": List[int],
> "entities": List[str],
> "entities": List[(int, int, str)],
> "cats": Dict[str, float],
> "links": Dict[(int, int), dict],
> "spans": Dict[str, List[Tuple]],
> }
> ```
@ -417,9 +418,10 @@ file to keep track of your settings and hyperparameters and your own
| `deps` | List of string values indicating the [dependency relation](/usage/linguistic-features#dependency-parse) of a token to its head. ~~List[str]~~ |
| `heads` | List of integer values indicating the dependency head of each token, referring to the absolute index of each token in the text. ~~List[int]~~ |
| `entities` | **Option 1:** List of [BILUO tags](/usage/linguistic-features#accessing-ner) per token of the format `"{action}-{label}"`, or `None` for unannotated tokens. ~~List[str]~~ |
| `entities` | **Option 2:** List of `"(start, end, label)"` tuples defining all entities in the text. ~~List[Tuple[int, int, str]]~~ |
| `entities` | **Option 2:** List of `(start_char, end_char, label)` tuples defining all entities in the text. ~~List[Tuple[int, int, str]]~~ |
| `cats` | Dictionary of `label`/`value` pairs indicating how relevant a certain [text category](/api/textcategorizer) is for the text. ~~Dict[str, float]~~ |
| `links` | Dictionary of `offset`/`dict` pairs defining [named entity links](/usage/linguistic-features#entity-linking). The character offsets are linked to a dictionary of relevant knowledge base IDs. ~~Dict[Tuple[int, int], Dict]~~ |
| `spans` | Dictionary of `spans_key`/`List[Tuple]` pairs defining the spans for each spans key as `(start_char, end_char, label, kb_id)` tuples. ~~Dict[str, List[Tuple[int, int, str, str]]~~ |
<Infobox title="Notes and caveats">

View File

@ -158,10 +158,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/dependencyparser#call) and
## DependencyParser.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -179,7 +179,7 @@ This method was previously called `begin_training`.
>
> ```python
> parser = nlp.add_pipe("parser")
> parser.initialize(lambda: [], nlp=nlp)
> parser.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -193,7 +193,7 @@ This method was previously called `begin_training`.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ |

View File

@ -141,10 +141,10 @@ and [`pipe`](/api/edittreelemmatizer#pipe) delegate to the
## EditTreeLemmatizer.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -156,7 +156,7 @@ config.
>
> ```python
> lemmatizer = nlp.add_pipe("trainable_lemmatizer", name="lemmatizer")
> lemmatizer.initialize(lambda: [], nlp=nlp)
> lemmatizer.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -170,7 +170,7 @@ config.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |

View File

@ -185,10 +185,10 @@ with the current vocab.
## EntityLinker.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
@ -208,15 +208,15 @@ This method was previously called `begin_training`.
>
> ```python
> entity_linker = nlp.add_pipe("entity_linker")
> entity_linker.initialize(lambda: [], nlp=nlp, kb_loader=my_kb)
> entity_linker.initialize(lambda: examples, nlp=nlp, kb_loader=my_kb)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ |
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `kb_loader` | Function that creates a [`KnowledgeBase`](/api/kb) from a `Vocab` instance. ~~Callable[[Vocab], KnowledgeBase]~~ |
## EntityLinker.predict {#predict tag="method"}

View File

@ -154,10 +154,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/entityrecognizer#call) and
## EntityRecognizer.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -175,7 +175,7 @@ This method was previously called `begin_training`.
>
> ```python
> ner = nlp.add_pipe("ner")
> ner.initialize(lambda: [], nlp=nlp)
> ner.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -189,7 +189,7 @@ This method was previously called `begin_training`.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Dict[str, Dict[str, int]]]~~ |

View File

@ -147,10 +147,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
## Morphologizer.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -162,7 +162,7 @@ config.
>
> ```python
> morphologizer = nlp.add_pipe("morphologizer")
> morphologizer.initialize(lambda: [], nlp=nlp)
> morphologizer.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -176,7 +176,7 @@ config.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[dict]~~ |

View File

@ -132,10 +132,10 @@ and [`pipe`](/api/sentencerecognizer#pipe) delegate to the
## SentenceRecognizer.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
@ -144,14 +144,14 @@ by [`Language.initialize`](/api/language#initialize).
>
> ```python
> senter = nlp.add_pipe("senter")
> senter.initialize(lambda: [], nlp=nlp)
> senter.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## SentenceRecognizer.predict {#predict tag="method"}

View File

@ -56,7 +56,7 @@ architectures and their arguments and hyperparameters.
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
@ -93,7 +93,7 @@ shortcut for this and instantiate the component using its string name and
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~ |
@ -147,10 +147,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/spancategorizer#call) and
## SpanCategorizer.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -162,7 +162,7 @@ config.
>
> ```python
> spancat = nlp.add_pipe("spancat")
> spancat.initialize(lambda: [], nlp=nlp)
> spancat.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -176,7 +176,7 @@ config.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |

View File

@ -130,10 +130,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/tagger#call) and
## Tagger.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -151,7 +151,7 @@ This method was previously called `begin_training`.
>
> ```python
> tagger = nlp.add_pipe("tagger")
> tagger.initialize(lambda: [], nlp=nlp)
> tagger.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -165,7 +165,7 @@ This method was previously called `begin_training`.
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |

View File

@ -84,6 +84,7 @@ architectures and their arguments and hyperparameters.
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
| `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_cats`](/api/scorer#score_cats) for the attribute `"cats"`. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/textcat.py
@ -175,10 +176,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/textcategorizer#call) and
## TextCategorizer.initialize {#initialize tag="method" new="3"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. The data examples are
used to **initialize the model** of the component and can either be the full
training data or a representative sample. Initialization includes validating the
network,
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize) and lets you customize
@ -196,7 +197,7 @@ This method was previously called `begin_training`.
>
> ```python
> textcat = nlp.add_pipe("textcat")
> textcat.initialize(lambda: [], nlp=nlp)
> textcat.initialize(lambda: examples, nlp=nlp)
> ```
>
> ```ini
@ -211,7 +212,7 @@ This method was previously called `begin_training`.
| Name | Description |
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |

View File

@ -127,10 +127,10 @@ and [`set_annotations`](/api/tok2vec#set_annotations) methods.
Initialize the component for training and return an
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
function that returns an iterable of [`Example`](/api/example) objects. The data
examples are used to **initialize the model** of the component and can either be
the full training data or a representative sample. Initialization includes
validating the network,
function that returns an iterable of [`Example`](/api/example) objects. **At
least one example should be supplied.** The data examples are used to
**initialize the model** of the component and can either be the full training
data or a representative sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
@ -139,14 +139,14 @@ by [`Language.initialize`](/api/language#initialize).
>
> ```python
> tok2vec = nlp.add_pipe("tok2vec")
> tok2vec.initialize(lambda: [], nlp=nlp)
> tok2vec.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## Tok2Vec.predict {#predict tag="method"}

View File

@ -240,7 +240,7 @@ browser. Will run a simple web server.
| Name | Description |
| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -265,7 +265,7 @@ Render a dependency parse tree or named entity visualization.
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ |
| `style` | Visualization style,`"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` <Tag variant="new">3.3</Tag>. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
@ -273,6 +273,73 @@ Render a dependency parse tree or named entity visualization.
| `jupyter` | Explicitly enable or disable "[Jupyter](http://jupyter.org/) mode" to return markup ready to be rendered in a notebook. Detected automatically if `None` (default). ~~Optional[bool]~~ |
| **RETURNS** | The rendered HTML markup. ~~str~~ |
### displacy.parse_deps {#displacy.parse_deps tag="method" new="2"}
Generate dependency parse in `{'words': [], 'arcs': []}` format.
For use with the `manual=True` argument in `displacy.render`.
> #### Example
>
> ```python
> import spacy
> from spacy import displacy
> nlp = spacy.load("en_core_web_sm")
> doc = nlp("This is a sentence.")
> deps_parse = displacy.parse_deps(doc)
> html = displacy.render(deps_parse, style="dep", manual=True)
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------- |
| `orig_doc` | Doc to parse dependencies. ~~Doc~~ |
| `options` | Dependency parse specific visualisation options. ~~Dict[str, Any]~~ |
| **RETURNS** | Generated dependency parse keyed by words and arcs. ~~dict~~ |
### displacy.parse_ents {#displacy.parse_ents tag="method" new="2"}
Generate named entities in `[{start: i, end: i, label: 'label'}]` format.
For use with the `manual=True` argument in `displacy.render`.
> #### Example
>
> ```python
> import spacy
> from spacy import displacy
> nlp = spacy.load("en_core_web_sm")
> doc = nlp("But Google is starting from behind.")
> ents_parse = displacy.parse_ents(doc)
> html = displacy.render(ents_parse, style="ent", manual=True)
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------- |
| `doc` | Doc to parse entities. ~~Doc~~ |
| `options` | NER-specific visualisation options. ~~Dict[str, Any]~~ |
| **RETURNS** | Generated entities keyed by text (original text) and ents. ~~dict~~ |
### displacy.parse_spans {#displacy.parse_spans tag="method" new="2"}
Generate spans in `[{start_token: i, end_token: i, label: 'label'}]` format.
For use with the `manual=True` argument in `displacy.render`.
> #### Example
>
> ```python
> import spacy
> from spacy import displacy
> nlp = spacy.load("en_core_web_sm")
> doc = nlp("But Google is starting from behind.")
> doc.spans['orgs'] = [doc[1:2]]
> ents_parse = displacy.parse_spans(doc, options={"spans_key" : "orgs"})
> html = displacy.render(ents_parse, style="span", manual=True)
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------- |
| `doc` | Doc to parse entities. ~~Doc~~ |
| `options` | Span-specific visualisation options. ~~Dict[str, Any]~~ |
| **RETURNS** | Generated entities keyed by text (original text) and ents. ~~dict~~ |
### Visualizer options {#displacy_options}
The `options` argument lets you specify additional settings for each visualizer.

View File

@ -175,10 +175,10 @@ applied to the `Doc` in order. Both [`__call__`](/api/transformer#call) and
Initialize the component for training and return an
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
function that returns an iterable of [`Example`](/api/example) objects. The data
examples are used to **initialize the model** of the component and can either be
the full training data or a representative sample. Initialization includes
validating the network,
function that returns an iterable of [`Example`](/api/example) objects. **At
least one example should be supplied.** The data examples are used to
**initialize the model** of the component and can either be the full training
data or a representative sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
@ -187,14 +187,14 @@ by [`Language.initialize`](/api/language#initialize).
>
> ```python
> trf = nlp.add_pipe("transformer")
> trf.initialize(lambda: iter([]), nlp=nlp)
> trf.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## Transformer.predict {#predict tag="method"}

View File

@ -11,8 +11,8 @@ menu:
- ['Tokenization', 'tokenization']
- ['Merging & Splitting', 'retokenization']
- ['Sentence Segmentation', 'sbd']
- ['Vectors & Similarity', 'vectors-similarity']
- ['Mappings & Exceptions', 'mappings-exceptions']
- ['Vectors & Similarity', 'vectors-similarity']
- ['Language Data', 'language-data']
---

View File

@ -198,12 +198,12 @@ import DisplacySpanHtml from 'images/displacy-span.html'
The span visualizer lets you customize the following `options`:
| Argument | Description |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| Argument | Description |
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
Because spans can be stored across different keys in `doc.spans`, you need to specify
which one displaCy should use with `spans_key` (`sc` is the default).
@ -343,9 +343,21 @@ want to visualize output from other libraries, like [NLTK](http://www.nltk.org)
or
[SyntaxNet](https://github.com/tensorflow/models/tree/master/research/syntaxnet).
If you set `manual=True` on either `render()` or `serve()`, you can pass in data
in displaCy's format as a dictionary (instead of `Doc` objects).
in displaCy's format as a dictionary (instead of `Doc` objects). There are helper
functions for converting `Doc` objects to displaCy's format for use with `manual=True`:
[`displacy.parse_deps`](/api/top-level#displacy.parse_deps),
[`displacy.parse_ents`](/api/top-level#displacy.parse_ents),
and [`displacy.parse_spans`](/api/top-level#displacy.parse_spans).
> #### Example
> #### Example with parse function
>
> ```python
> doc = nlp("But Google is starting from behind.")
> ex = displacy.parse_ents(doc)
> html = displacy.render(ex, style="ent", manual=True)
> ```
> #### Example with raw data
>
> ```python
> ex = [{"text": "But Google is starting from behind.",
@ -354,6 +366,7 @@ in displaCy's format as a dictionary (instead of `Doc` objects).
> html = displacy.render(ex, style="ent", manual=True)
> ```
```python
### DEP input
{
@ -389,6 +402,18 @@ in displaCy's format as a dictionary (instead of `Doc` objects).
}
```
```python
### SPANS input
{
"text": "Welcome to the Bank of China.",
"spans": [
{"start_token": 3, "end_token": 6, "label": "ORG"},
{"start_token": 5, "end_token": 6, "label": "GPE"},
],
"tokens": ["Welcome", "to", "the", "Bank", "of", "China", "."],
}
```
## Using displaCy in a web application {#webapp}
If you want to use the visualizers as part of a web application, for example to

View File

@ -265,6 +265,11 @@
"name": "Luxembourgish",
"has_examples": true
},
{
"code": "lg",
"name": "Luganda",
"has_examples": true
},
{
"code": "lij",
"name": "Ligurian",
@ -467,10 +472,20 @@
"code": "uk",
"name": "Ukrainian",
"has_examples": true,
"models": [
"uk_core_news_sm",
"uk_core_news_md",
"uk_core_news_lg",
"uk_core_news_trf"
],
"dependencies": [
{
"name": "pymorphy2",
"url": "https://github.com/kmike/pymorphy2"
},
{
"name": "pymorphy2-dicts-uk",
"url": "https://github.com/kmike/pymorphy2-dicts/"
}
]
},

View File

@ -1,5 +1,39 @@
{
"resources": [
{
"id": "concepcy",
"title": "concepCy",
"slogan": "A multilingual knowledge graph in spaCy",
"description": "A spaCy wrapper for ConceptNet, a freely-available semantic network designed to help computers understand the meaning of words.",
"github": "JulesBelveze/concepcy",
"pip": "concepcy",
"code_example": [
"import spacy",
"import concepcy",
"",
"nlp = spacy.load('en_core_web_sm')",
"# Using default concepCy configuration",
"nlp.add_pipe('concepcy')",
"",
"doc = nlp('WHO is a lovely company')",
"",
"# Access all the 'RelatedTo' relations from the Doc",
"for word, relations in doc._.relatedto.items():",
" print(f'Word: {word}\n{relations}')",
"",
"# Access the 'RelatedTo' relations word by word",
"for token in doc:",
" print(f'Word: {token}\n{token._.relatedto}')"
],
"category": ["pipeline"],
"image": "https://github.com/JulesBelveze/concepcy/blob/main/figures/concepcy.png",
"tags": ["semantic", "ConceptNet"],
"author": "Jules Belveze",
"author_links": {
"github": "JulesBelveze",
"website": "https://www.linkedin.com/in/jules-belveze/"
}
},
{
"id": "spacyfishing",
"title": "spaCy fishing",
@ -2604,7 +2638,7 @@
" Add the courgette, garlic, red peppers and oregano and cook for 23 minutes.",
" Later, add some oranges and chickens.\"\"\"",
"",
"# use any model that has internal spacy embeddings",
"# use any model that has internal spacy embeddings",
"nlp = spacy.load('en_core_web_lg')",
"nlp.add_pipe(\"concise_concepts\", ",
" config={\"data\": data}",
@ -2650,7 +2684,7 @@
" At that location, Nissin was founded.",
" Many students survived by eating these noodles, but they don't even know him.\"\"\"",
"",
"# use any model that has internal spacy embeddings",
"# use any model that has internal spacy embeddings",
"nlp = spacy.load('en_core_web_sm')",
"nlp.add_pipe(",
" \"xx_coref\", config={\"chunk_size\": 2500, \"chunk_overlap\": 2, \"device\": 0})",
@ -2833,7 +2867,7 @@
"doc = nlp(\"AE died in Princeton in 1955.\")",
"",
"print(doc._.clauses)",
"# Output:",
"# Output:",
"# <SV, AE, died, None, None, None, [in Princeton, in 1955]>",
"",
"propositions = doc._.clauses[0].to_propositions(as_text=True)",
@ -3599,7 +3633,7 @@
"",
"#Lexico Semantic (LxSem) Features",
"TTRF = LingFeat.TTRF_() #Type Token Ratio Features",
"VarF = LingFeat.VarF_() #Noun/Verb/Adj/Adv Variation Features",
"VarF = LingFeat.VarF_() #Noun/Verb/Adj/Adv Variation Features",
"PsyF = LingFeat.PsyF_() #Psycholinguistic Difficulty of Words (AoA Kuperman)",
"WoLF = LingFeat.WorF_() #Word Familiarity from Frequency Count (SubtlexUS)",
"",

View File

@ -114,7 +114,11 @@ function formatVectors(data) {
if (!data) return 'n/a'
if (Object.values(data).every(n => n === 0)) return 'context vectors only'
const { keys, vectors, width } = data
return `${abbrNum(keys)} keys, ${abbrNum(vectors)} unique vectors (${width} dimensions)`
if (keys >= 0) {
return `${abbrNum(keys)} keys, ${abbrNum(vectors)} unique vectors (${width} dimensions)`
} else {
return `${abbrNum(vectors)} floret vectors (${width} dimensions)`
}
}
function formatAccuracy(data, lang) {