Update docstrings and API docs for Tokenizer

This commit is contained in:
ines 2017-05-21 13:18:14 +02:00
parent f216422ac5
commit c5a653fa48
2 changed files with 200 additions and 74 deletions

View File

@ -2,8 +2,6 @@
# coding: utf8
from __future__ import unicode_literals
import ujson
from cython.operator cimport dereference as deref
from cython.operator cimport preincrement as preinc
from cymem.cymem cimport Pool
@ -12,32 +10,31 @@ from preshed.maps cimport PreshMap
from .strings cimport hash_string
cimport cython
from . import util
from .tokens.doc cimport Doc
cdef class Tokenizer:
"""Segment text, and create Doc objects with the discovered segment
boundaries.
"""
def __init__(self, Vocab vocab, rules, prefix_search, suffix_search, infix_finditer, token_match=None):
"""
Create a Tokenizer, to create Doc objects given unicode text.
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
Arguments:
vocab (Vocab):
A storage container for lexical types.
rules (dict):
Exceptions and special-cases for the tokenizer.
prefix_search:
A function matching the signature of re.compile(string).search
to match prefixes.
suffix_search:
A function matching the signature of re.compile(string).search
to match suffixes.
infix_finditer:
A function matching the signature of re.compile(string).finditer
to find infixes.
token_match:
A boolean function matching strings that becomes tokens.
vocab (Vocab): A storage container for lexical types.
rules (dict): Exceptions and special-cases for the tokenizer.
prefix_search (callable): A function matching the signature of
`re.compile(string).search` to match prefixes.
suffix_search (callable): A function matching the signature of
`re.compile(string).search` to match suffixes.
`infix_finditer` (callable): A function matching the signature of
`re.compile(string).finditer` to find infixes.
token_match (callable): A boolean function matching strings to be
recognised as tokens.
RETURNS (Tokenizer): The newly constructed object.
EXAMPLE:
>>> tokenizer = Tokenizer(nlp.vocab)
>>> tokenizer = English().Defaults.create_tokenizer(nlp)
"""
self.mem = Pool()
self._cache = PreshMap()
@ -69,13 +66,10 @@ cdef class Tokenizer:
@cython.boundscheck(False)
def __call__(self, unicode string):
"""
Tokenize a string.
"""Tokenize a string.
Arguments:
string (unicode): The string to tokenize.
Returns:
Doc A container for linguistic annotations.
string (unicode): The string to tokenize.
RETURNS (Doc): A container for linguistic annotations.
"""
if len(string) >= (2 ** 30):
raise ValueError(
@ -123,18 +117,13 @@ cdef class Tokenizer:
return tokens
def pipe(self, texts, batch_size=1000, n_threads=2):
"""
Tokenize a stream of texts.
"""Tokenize a stream of texts.
Arguments:
texts: A sequence of unicode texts.
batch_size (int):
The number of texts to accumulate in an internal buffer.
n_threads (int):
The number of threads to use, if the implementation supports
multi-threading. The default tokenizer is single-threaded.
Yields:
Doc A sequence of Doc objects, in order.
texts: A sequence of unicode texts.
batch_size (int): The number of texts to accumulate in an internal buffer.
n_threads (int): The number of threads to use, if the implementation
supports multi-threading. The default tokenizer is single-threaded.
YIELDS (Doc): A sequence of Doc objects, in order.
"""
for text in texts:
yield self(text)
@ -278,27 +267,23 @@ cdef class Tokenizer:
self._cache.set(key, cached)
def find_infix(self, unicode string):
"""
Find internal split points of the string, such as hyphens.
"""Find internal split points of the string, such as hyphens.
string (unicode): The string to segment.
Returns List[re.MatchObject]
A list of objects that have .start() and .end() methods, denoting the
placement of internal segment separators, e.g. hyphens.
RETURNS (list): A list of `re.MatchObject` objects that have `.start()`
and `.end()` methods, denoting the placement of internal segment
separators, e.g. hyphens.
"""
if self.infix_finditer is None:
return 0
return list(self.infix_finditer(string))
def find_prefix(self, unicode string):
"""
Find the length of a prefix that should be segmented from the string,
"""Find the length of a prefix that should be segmented from the string,
or None if no prefix rules match.
Arguments:
string (unicode): The string to segment.
Returns (int or None): The length of the prefix if present, otherwise None.
string (unicode): The string to segment.
RETURNS (int): The length of the prefix if present, otherwise `None`.
"""
if self.prefix_search is None:
return 0
@ -306,13 +291,11 @@ cdef class Tokenizer:
return (match.end() - match.start()) if match is not None else 0
def find_suffix(self, unicode string):
"""
Find the length of a suffix that should be segmented from the string,
"""Find the length of a suffix that should be segmented from the string,
or None if no suffix rules match.
Arguments:
string (unicode): The string to segment.
Returns (int or None): The length of the suffix if present, otherwise None.
string (unicode): The string to segment.
Returns (int): The length of the suffix if present, otherwise `None`.
"""
if self.suffix_search is None:
return 0
@ -320,23 +303,17 @@ cdef class Tokenizer:
return (match.end() - match.start()) if match is not None else 0
def _load_special_tokenization(self, special_cases):
"""
Add special-case tokenization rules.
"""
"""Add special-case tokenization rules."""
for chunk, substrings in sorted(special_cases.items()):
self.add_special_case(chunk, substrings)
def add_special_case(self, unicode string, substrings):
"""
Add a special-case tokenization rule.
"""Add a special-case tokenization rule.
Arguments:
string (unicode): The string to specially tokenize.
token_attrs:
A sequence of dicts, where each dict describes a token and its
attributes. The ORTH fields of the attributes must exactly match
the string when they are concatenated.
Returns None
string (unicode): The string to specially tokenize.
token_attrs (iterable): A sequence of dicts, where each dict describes
a token and its attributes. The `ORTH` fields of the attributes must
exactly match the string when they are concatenated.
"""
substrings = list(substrings)
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
@ -347,3 +324,38 @@ cdef class Tokenizer:
self._specials.set(key, cached)
self._cache.set(key, cached)
self._rules[string] = substrings
def to_disk(self, path):
"""Save the current state to a directory.
path (unicode or Path): A path to a directory, which will be created if
it doesn't exist. Paths may be either strings or `Path`-like objects.
"""
raise NotImplementedError()
def from_disk(self, path):
"""Loads state from a directory. Modifies the object in place and
returns it.
path (unicode or Path): A path to a directory. Paths may be either
strings or `Path`-like objects.
RETURNS (Tokenizer): The modified `Tokenizer` object.
"""
raise NotImplementedError()
def to_bytes(self, **exclude):
"""Serialize the current state to a binary string.
**exclude: Named attributes to prevent from being serialized.
RETURNS (bytes): The serialized form of the `Tokenizer` object.
"""
raise NotImplementedError()
def from_bytes(self, bytes_data, **exclude):
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
**exclude: Named attributes to prevent from being loaded.
RETURNS (Tokenizer): The `Tokenizer` object.
"""
raise NotImplementedError()

View File

@ -11,6 +11,15 @@ p
p Create a #[code Tokenizer], to create #[code Doc] objects given unicode text.
+aside-code("Example").
# Construction 1
from spacy.tokenizer import Tokenizer
tokenizer = Tokenizer(nlp.vocab)
# Construction 2
from spacy.lang.en import English
tokenizer = English().Defaults.create_tokenizer(nlp)
+table(["Name", "Type", "Description"])
+row
+cell #[code vocab]
@ -43,6 +52,11 @@ p Create a #[code Tokenizer], to create #[code Doc] objects given unicode text.
| A function matching the signature of
| #[code re.compile(string).finditer] to find infixes.
+row
+cell #[code token_match]
+cell callable
+cell A boolean function matching strings to be recognised as tokens.
+footrow
+cell returns
+cell #[code Tokenizer]
@ -53,6 +67,10 @@ p Create a #[code Tokenizer], to create #[code Doc] objects given unicode text.
p Tokenize a string.
+aside-code("Example").
tokens = tokenizer(u'This is a sentence')
assert len(tokens) == 4
+table(["Name", "Type", "Description"])
+row
+cell #[code string]
@ -69,6 +87,11 @@ p Tokenize a string.
p Tokenize a stream of texts.
+aside-code("Example").
texts = [u'One document.', u'...', u'Lots of documents']
for doc in tokenizer.pipe(texts, batch_size=50):
pass
+table(["Name", "Type", "Description"])
+row
+cell #[code texts]
@ -105,11 +128,11 @@ p Find internal split points of the string.
+footrow
+cell returns
+cell #[code List[re.MatchObject]]
+cell list
+cell
| A list of objects that have #[code .start()] and #[code .end()]
| methods, denoting the placement of internal segment separators,
| e.g. hyphens.
| A list of #[code re.MatchObject] objects that have #[code .start()]
| and #[code .end()] methods, denoting the placement of internal
| segment separators, e.g. hyphens.
+h(2, "find_prefix") Tokenizer.find_prefix
+tag method
@ -126,7 +149,7 @@ p
+footrow
+cell returns
+cell int / #[code None]
+cell int
+cell The length of the prefix if present, otherwise #[code None].
+h(2, "find_suffix") Tokenizer.find_suffix
@ -150,7 +173,16 @@ p
+h(2, "add_special_case") Tokenizer.add_special_case
+tag method
p Add a special-case tokenization rule.
p
| Add a special-case tokenization rule. This mechanism is also used to add
| custom tokenizer exceptions to the language data. See the usage workflow
| on #[+a("/docs/usage/adding-languages#tokenizer-exceptions") adding languages]
| for more details and examples.
+aside-code("Example").
from spacy.attrs import ORTH, LEMMA
case = [{"don't": [{ORTH: "do"}, {ORTH: "n't", LEMMA: "not"}]}]
tokenizer.add_special_case(case)
+table(["Name", "Type", "Description"])
+row
@ -160,16 +192,98 @@ p Add a special-case tokenization rule.
+row
+cell #[code token_attrs]
+cell -
+cell iterable
+cell
| A sequence of dicts, where each dict describes a token and its
| attributes. The #[code ORTH] fields of the attributes must
| exactly match the string when they are concatenated.
+h(2, "to_disk") Tokenizer.to_disk
+tag method
p Save the current state to a directory.
+aside-code("Example").
tokenizer.to_disk('/path/to/tokenizer')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell
| A path to a directory, which will be created if it doesn't exist.
| Paths may be either strings or #[code Path]-like objects.
+h(2, "from_disk") Tokenizer.from_disk
+tag method
p Loads state from a directory. Modifies the object in place and returns it.
+aside-code("Example").
from spacy.tokenizer import Tokenizer
tokenizer = Tokenizer(nlp.vocab)
tokenizer = tokenizer.from_disk('/path/to/tokenizer')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell
| A path to a directory. Paths may be either strings or
| #[code Path]-like objects.
+footrow
+cell returns
+cell #[code None]
+cell #[code Tokenizer]
+cell The modified #[code Tokenizer] object.
+h(2, "to_bytes") Tokenizer.to_bytes
+tag method
p Serialize the current state to a binary string.
+aside-code("Example").
tokenizer_bytes = tokenizer.to_bytes()
+table(["Name", "Type", "Description"])
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being serialized.
+footrow
+cell returns
+cell bytes
+cell The serialized form of the #[code Tokenizer] object.
+h(2, "from_bytes") Tokenizer.from_bytes
+tag method
p Load state from a binary string.
+aside-code("Example").
fron spacy.tokenizer import Tokenizer
tokenizer_bytes = tokenizer.to_bytes()
new_tokenizer = Tokenizer(nlp.vocab)
new_tokenizer.from_bytes(tokenizer_bytes)
+table(["Name", "Type", "Description"])
+row
+cell #[code bytes_data]
+cell bytes
+cell The data to load from.
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being loaded.
+footrow
+cell returns
+cell #[code Tokenizer]
+cell The #[code Tokenizer] object.
+h(2, "attributes") Attributes