Remove docs references to starters for now (see #6262) [ci skip]

This commit is contained in:
Ines Montani 2020-10-16 15:46:34 +02:00
parent 5a6ed01ce0
commit c655742b8b
7 changed files with 11 additions and 64 deletions

View File

@ -58,5 +58,7 @@ redirects = [
{from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true}, {from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true},
{from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true}, {from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true},
# Renamed universe projects # Renamed universe projects
{from = "/universe/project/spacy-pytorch-transformers", to = "/universe/project/spacy-transformers", force = true} {from = "/universe/project/spacy-pytorch-transformers", to = "/universe/project/spacy-transformers", force = true},
# Old model pages
{from = "/models/en-starters", to = "/models/en", force = true},
] ]

View File

@ -68,8 +68,8 @@ representation consists of 300 dimensions of `0`, which means it's practically
nonexistent. If your application will benefit from a **large vocabulary** with nonexistent. If your application will benefit from a **large vocabulary** with
more vectors, you should consider using one of the larger pipeline packages or more vectors, you should consider using one of the larger pipeline packages or
loading in a full vector package, for example, loading in a full vector package, for example,
[`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg), which includes [`en_core_web_lg`](/models/en#en_core_web_lg), which includes **685k unique
over **1 million unique vectors**. vectors**.
spaCy is able to compare two objects, and make a prediction of **how similar spaCy is able to compare two objects, and make a prediction of **how similar
they are**. Predicting similarity is useful for building recommendation systems they are**. Predicting similarity is useful for building recommendation systems

View File

@ -1859,9 +1859,8 @@ pruning the vectors will be taken care of automatically if you set the `--prune`
flag. You can also do it manually in the following steps: flag. You can also do it manually in the following steps:
1. Start with a **word vectors package** that covers a huge vocabulary. For 1. Start with a **word vectors package** that covers a huge vocabulary. For
instance, the [`en_vectors_web_lg`](/models/en-starters#en_vectors_web_lg) instance, the [`en_core_web_lg`](/models/en#en_core_web_lg) package provides
starter provides 300-dimensional GloVe vectors for over 1 million terms of 300-dimensional GloVe vectors for 685k terms of English.
English.
2. If your vocabulary has values set for the `Lexeme.prob` attribute, the 2. If your vocabulary has values set for the `Lexeme.prob` attribute, the
lexemes will be sorted by descending probability to determine which vectors lexemes will be sorted by descending probability to determine which vectors
to prune. Otherwise, lexemes will be sorted by their order in the `Vocab`. to prune. Otherwise, lexemes will be sorted by their order in the `Vocab`.
@ -1869,7 +1868,7 @@ flag. You can also do it manually in the following steps:
vectors you want to keep. vectors you want to keep.
```python ```python
nlp = spacy.load('en_vectors_web_lg') nlp = spacy.load("en_core_web_lg")
n_vectors = 105000 # number of vectors to keep n_vectors = 105000 # number of vectors to keep
removed_words = nlp.vocab.prune_vectors(n_vectors) removed_words = nlp.vocab.prune_vectors(n_vectors)

View File

@ -22,7 +22,7 @@ For more details and a behind-the-scenes look at the new release,
> >
> ```bash > ```bash
> $ python -m spacy pretrain ./raw_text.jsonl > $ python -m spacy pretrain ./raw_text.jsonl
> en_vectors_web_lg ./pretrained-model > en_core_web_lg ./pretrained-model
> ``` > ```
spaCy v2.1 introduces a new CLI command, `spacy pretrain`, that can make your spaCy v2.1 introduces a new CLI command, `spacy pretrain`, that can make your

View File

@ -226,8 +226,6 @@ exports.createPages = ({ graphql, actions }) => {
const langs = result.data.site.siteMetadata.languages const langs = result.data.site.siteMetadata.languages
const modelLangs = langs.filter(({ models }) => models && models.length) const modelLangs = langs.filter(({ models }) => models && models.length)
const starterLangs = langs.filter(({ starters }) => starters && starters.length)
modelLangs.forEach(({ code, name, models, example, has_examples }, i) => { modelLangs.forEach(({ code, name, models, example, has_examples }, i) => {
const slug = `/models/${code}` const slug = `/models/${code}`
const next = i < modelLangs.length - 1 ? modelLangs[i + 1] : null const next = i < modelLangs.length - 1 ? modelLangs[i + 1] : null
@ -247,28 +245,6 @@ exports.createPages = ({ graphql, actions }) => {
}, },
}) })
}) })
starterLangs.forEach(({ code, name, starters }, i) => {
const slug = `/models/${code}-starters`
const next = i < starterLangs.length - 1 ? starterLangs[i + 1] : null
createPage({
path: slug,
component: DEFAULT_TEMPLATE,
context: {
id: `${code}-starters`,
slug: slug,
isIndex: false,
title: name,
section: 'models',
sectionTitle: sections.models.title,
theme: sections.models.theme,
next: next
? { title: next.name, slug: `/models/${next.code}-starters` }
: null,
meta: { models: starters, isStarters: true },
},
})
})
}) })
) )
}) })

View File

@ -52,19 +52,6 @@ const Docs = ({ pageContext, children }) => (
id: model, id: model,
})), })),
})) }))
if (sidebar.items.length > 2) {
sidebar.items[2].items = languages
.filter(({ starters }) => starters && starters.length)
.map(lang => ({
text: lang.name,
url: `/models/${lang.code}-starters`,
isActive: id === `${lang.code}-starters`,
menu: lang.starters.map(model => ({
text: model,
id: model,
})),
}))
}
} }
const sourcePath = source ? github(source) : null const sourcePath = source ? github(source) : null
const currentSource = getCurrentSource(slug, isIndex) const currentSource = getCurrentSource(slug, isIndex)

View File

@ -374,7 +374,7 @@ const Models = ({ pageContext, repo, children }) => {
const [initialized, setInitialized] = useState(false) const [initialized, setInitialized] = useState(false)
const [compatibility, setCompatibility] = useState({}) const [compatibility, setCompatibility] = useState({})
const { id, title, meta } = pageContext const { id, title, meta } = pageContext
const { models, isStarters } = meta const { models } = meta
const baseUrl = `https://raw.githubusercontent.com/${repo}/master` const baseUrl = `https://raw.githubusercontent.com/${repo}/master`
useEffect(() => { useEffect(() => {
@ -388,26 +388,9 @@ const Models = ({ pageContext, repo, children }) => {
} }
}, [initialized, baseUrl]) }, [initialized, baseUrl])
const modelTitle = title
const modelTeaser = `Available trained pipelines for ${title}`
const starterTitle = `${title} starters`
const starterTeaser = `Available transfer learning starter packs for ${title}`
return ( return (
<> <>
<Title <Title title={title} teaser={`Available trained pipelines for ${title}`} />
title={isStarters ? starterTitle : modelTitle}
teaser={isStarters ? starterTeaser : modelTeaser}
/>
{isStarters && (
<Section>
<p>
Starter packs are pretrained weights you can initialize your models with to
achieve better accuracy, like word vectors (which will be used as features
during training).
</p>
</Section>
)}
<StaticQuery <StaticQuery
query={query} query={query}
render={({ site }) => render={({ site }) =>