mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Merge pull request #11074 from Schero1994/feature/remove
Batch #2 | spaCy universe cleanup
This commit is contained in:
		
						commit
						c7c3fb1d0c
					
				| 
						 | 
					@ -749,43 +749,6 @@
 | 
				
			||||||
            "category": ["standalone", "research"],
 | 
					            "category": ["standalone", "research"],
 | 
				
			||||||
            "tags": ["pytorch"]
 | 
					            "tags": ["pytorch"]
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "NeuroNER",
 | 
					 | 
				
			||||||
            "title": "NeuroNER",
 | 
					 | 
				
			||||||
            "slogan": "Named-entity recognition using neural networks",
 | 
					 | 
				
			||||||
            "github": "Franck-Dernoncourt/NeuroNER",
 | 
					 | 
				
			||||||
            "category": ["models"],
 | 
					 | 
				
			||||||
            "pip": "pyneuroner[cpu]",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "from neuroner import neuromodel",
 | 
					 | 
				
			||||||
                "nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "tags": ["standalone"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "NLPre",
 | 
					 | 
				
			||||||
            "title": "NLPre",
 | 
					 | 
				
			||||||
            "slogan": "Natural Language Preprocessing Library for health data and more",
 | 
					 | 
				
			||||||
            "github": "NIHOPA/NLPre",
 | 
					 | 
				
			||||||
            "pip": "nlpre",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "from nlpre import titlecaps, dedash, identify_parenthetical_phrases",
 | 
					 | 
				
			||||||
                "from nlpre import replace_acronyms, replace_from_dictionary",
 | 
					 | 
				
			||||||
                "ABBR = identify_parenthetical_phrases()(text)",
 | 
					 | 
				
			||||||
                "parsers = [dedash(), titlecaps(), replace_acronyms(ABBR),",
 | 
					 | 
				
			||||||
                "        replace_from_dictionary(prefix='MeSH_')]",
 | 
					 | 
				
			||||||
                "for f in parsers:",
 | 
					 | 
				
			||||||
                "    text = f(text)",
 | 
					 | 
				
			||||||
                "print(text)"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "category": ["scientific", "biomedical"],
 | 
					 | 
				
			||||||
            "author": "Travis Hoppe",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "thoppe",
 | 
					 | 
				
			||||||
                "twitter": "metasemantic",
 | 
					 | 
				
			||||||
                "website": "http://thoppe.github.io/"
 | 
					 | 
				
			||||||
            }
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "Chatterbot",
 | 
					            "id": "Chatterbot",
 | 
				
			||||||
            "title": "Chatterbot",
 | 
					            "title": "Chatterbot",
 | 
				
			||||||
| 
						 | 
					@ -888,78 +851,6 @@
 | 
				
			||||||
                "github": "shigapov"
 | 
					                "github": "shigapov"
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy_hunspell",
 | 
					 | 
				
			||||||
            "slogan": "Add spellchecking and spelling suggestions to your spaCy pipeline using Hunspell",
 | 
					 | 
				
			||||||
            "description": "This package uses the [spaCy 2.0 extensions](https://spacy.io/usage/processing-pipelines#extensions) to add [Hunspell](http://hunspell.github.io) support for spellchecking.",
 | 
					 | 
				
			||||||
            "github": "tokestermw/spacy_hunspell",
 | 
					 | 
				
			||||||
            "pip": "spacy_hunspell",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from spacy_hunspell import spaCyHunSpell",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en_core_web_sm')",
 | 
					 | 
				
			||||||
                "hunspell = spaCyHunSpell(nlp, 'mac')",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(hunspell)",
 | 
					 | 
				
			||||||
                "doc = nlp('I can haz cheezeburger.')",
 | 
					 | 
				
			||||||
                "haz = doc[2]",
 | 
					 | 
				
			||||||
                "haz._.hunspell_spell  # False",
 | 
					 | 
				
			||||||
                "haz._.hunspell_suggest  # ['ha', 'haze', 'hazy', 'has', 'hat', 'had', 'hag', 'ham', 'hap', 'hay', 'haw', 'ha z']"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "author": "Motoki Wu",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "tokestermw",
 | 
					 | 
				
			||||||
                "twitter": "plusepsilon"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["pipeline"],
 | 
					 | 
				
			||||||
            "tags": ["spellcheck"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy_grammar",
 | 
					 | 
				
			||||||
            "slogan": "Language Tool style grammar handling with spaCy",
 | 
					 | 
				
			||||||
            "description": "This packages leverages the [Matcher API](https://spacy.io/docs/usage/rule-based-matching) in spaCy to quickly match on spaCy tokens not dissimilar to regex. It  reads a `grammar.yml` file to load up custom patterns and returns the results inside `Doc`, `Span`, and `Token`. It is extensible through adding rules to `grammar.yml` (though currently only the simple string matching is implemented).",
 | 
					 | 
				
			||||||
            "github": "tokestermw/spacy_grammar",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from spacy_grammar.grammar import Grammar",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en')",
 | 
					 | 
				
			||||||
                "grammar = Grammar(nlp)",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(grammar)",
 | 
					 | 
				
			||||||
                "doc = nlp('I can haz cheeseburger.')",
 | 
					 | 
				
			||||||
                "doc._.has_grammar_error  # True"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "author": "Motoki Wu",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "tokestermw",
 | 
					 | 
				
			||||||
                "twitter": "plusepsilon"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["pipeline"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy_kenlm",
 | 
					 | 
				
			||||||
            "slogan": "KenLM extension for spaCy 2.0",
 | 
					 | 
				
			||||||
            "github": "tokestermw/spacy_kenlm",
 | 
					 | 
				
			||||||
            "pip": "spacy_kenlm",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from spacy_kenlm import spaCyKenLM",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en_core_web_sm')",
 | 
					 | 
				
			||||||
                "spacy_kenlm = spaCyKenLM()  # default model from test.arpa",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(spacy_kenlm)",
 | 
					 | 
				
			||||||
                "doc = nlp('How are you?')",
 | 
					 | 
				
			||||||
                "doc._.kenlm_score # doc score",
 | 
					 | 
				
			||||||
                "doc[:2]._.kenlm_score # span score",
 | 
					 | 
				
			||||||
                "doc[2]._.kenlm_score # token score"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "author": "Motoki Wu",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "tokestermw",
 | 
					 | 
				
			||||||
                "twitter": "plusepsilon"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["pipeline"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "spacy_readability",
 | 
					            "id": "spacy_readability",
 | 
				
			||||||
            "slogan": "Add text readability meta data to Doc objects",
 | 
					            "slogan": "Add text readability meta data to Doc objects",
 | 
				
			||||||
| 
						 | 
					@ -1028,34 +919,6 @@
 | 
				
			||||||
            },
 | 
					            },
 | 
				
			||||||
            "category": ["pipeline"]
 | 
					            "category": ["pipeline"]
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy-lookup",
 | 
					 | 
				
			||||||
            "slogan": "A powerful entity matcher for very large dictionaries, using the FlashText module",
 | 
					 | 
				
			||||||
            "description": "spaCy v2.0 extension and pipeline component for adding Named Entities metadata to `Doc` objects. Detects Named Entities using dictionaries. The extension sets the custom `Doc`, `Token` and `Span` attributes `._.is_entity`, `._.entity_type`, `._.has_entities` and `._.entities`. Named Entities are matched using the python module `flashtext`, and looked up in the data provided by different dictionaries.",
 | 
					 | 
				
			||||||
            "github": "mpuig/spacy-lookup",
 | 
					 | 
				
			||||||
            "pip": "spacy-lookup",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from spacy_lookup import Entity",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en')",
 | 
					 | 
				
			||||||
                "entity = Entity(keywords_list=['python', 'product manager', 'java platform'])",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(entity, last=True)",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "doc = nlp(\"I am a product manager for a java and python.\")",
 | 
					 | 
				
			||||||
                "assert doc._.has_entities == True",
 | 
					 | 
				
			||||||
                "assert doc[0]._.is_entity == False",
 | 
					 | 
				
			||||||
                "assert doc[3]._.entity_desc == 'product manager'",
 | 
					 | 
				
			||||||
                "assert doc[3]._.is_entity == True",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "print([(token.text, token._.canonical) for token in doc if token._.is_entity])"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "author": "Marc Puig",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "mpuig"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["pipeline"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "spacy-iwnlp",
 | 
					            "id": "spacy-iwnlp",
 | 
				
			||||||
            "slogan": "German lemmatization with IWNLP",
 | 
					            "slogan": "German lemmatization with IWNLP",
 | 
				
			||||||
| 
						 | 
					@ -1322,21 +1185,6 @@
 | 
				
			||||||
                "github": "huggingface"
 | 
					                "github": "huggingface"
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy-vis",
 | 
					 | 
				
			||||||
            "slogan": "A visualisation tool for spaCy using Hierplane",
 | 
					 | 
				
			||||||
            "description": "A visualiser for spaCy annotations. This visualisation uses the [Hierplane](https://allenai.github.io/hierplane/) Library to render the dependency parse from spaCy's models. It also includes visualisation of entities and POS tags within nodes.",
 | 
					 | 
				
			||||||
            "github": "DeNeutoy/spacy-vis",
 | 
					 | 
				
			||||||
            "url": "http://spacyvis.allennlp.org/spacy-parser",
 | 
					 | 
				
			||||||
            "thumb": "https://i.imgur.com/DAG9QFd.jpg",
 | 
					 | 
				
			||||||
            "image": "https://raw.githubusercontent.com/DeNeutoy/spacy-vis/master/img/example.gif",
 | 
					 | 
				
			||||||
            "author": "Mark Neumann",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "twitter": "MarkNeumannnn",
 | 
					 | 
				
			||||||
                "github": "DeNeutoy"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["visualizers"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "matcher-explorer",
 | 
					            "id": "matcher-explorer",
 | 
				
			||||||
            "title": "Rule-based Matcher Explorer",
 | 
					            "title": "Rule-based Matcher Explorer",
 | 
				
			||||||
| 
						 | 
					@ -2340,29 +2188,6 @@
 | 
				
			||||||
            "youtube": "8u57WSXVpmw",
 | 
					            "youtube": "8u57WSXVpmw",
 | 
				
			||||||
            "category": ["videos"]
 | 
					            "category": ["videos"]
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "adam_qas",
 | 
					 | 
				
			||||||
            "title": "ADAM: Question Answering System",
 | 
					 | 
				
			||||||
            "slogan": "A question answering system that extracts answers from Wikipedia to questions posed in natural language.",
 | 
					 | 
				
			||||||
            "github": "5hirish/adam_qas",
 | 
					 | 
				
			||||||
            "pip": "qas",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "git clone https://github.com/5hirish/adam_qas.git",
 | 
					 | 
				
			||||||
                "cd adam_qas",
 | 
					 | 
				
			||||||
                "pip install -r requirements.txt",
 | 
					 | 
				
			||||||
                "python -m qas.adam 'When was linux kernel version 4.0 released ?'"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "code_language": "bash",
 | 
					 | 
				
			||||||
            "thumb": "https://shirishkadam.files.wordpress.com/2018/04/mini_alleviate.png",
 | 
					 | 
				
			||||||
            "author": "Shirish Kadam",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "twitter": "5hirish",
 | 
					 | 
				
			||||||
                "github": "5hirish",
 | 
					 | 
				
			||||||
                "website": "https://shirishkadam.com/"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["standalone"],
 | 
					 | 
				
			||||||
            "tags": ["question-answering", "elasticsearch"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "self-attentive-parser",
 | 
					            "id": "self-attentive-parser",
 | 
				
			||||||
            "title": "Berkeley Neural Parser",
 | 
					            "title": "Berkeley Neural Parser",
 | 
				
			||||||
| 
						 | 
					@ -2460,20 +2285,6 @@
 | 
				
			||||||
            "category": ["nonpython"],
 | 
					            "category": ["nonpython"],
 | 
				
			||||||
            "tags": ["javascript"]
 | 
					            "tags": ["javascript"]
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy-raspberry",
 | 
					 | 
				
			||||||
            "title": "spacy-raspberry",
 | 
					 | 
				
			||||||
            "slogan": "64bit Raspberry Pi image for spaCy and neuralcoref",
 | 
					 | 
				
			||||||
            "github": "boehm-e/spacy-raspberry",
 | 
					 | 
				
			||||||
            "thumb": "https://i.imgur.com/VCJMrE6.png",
 | 
					 | 
				
			||||||
            "image": "https://raw.githubusercontent.com/boehm-e/spacy-raspberry/master/imgs/preview.png",
 | 
					 | 
				
			||||||
            "author": "Erwan Boehm",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "boehm-e"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "category": ["apis"],
 | 
					 | 
				
			||||||
            "tags": ["raspberrypi"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "spacy-wordnet",
 | 
					            "id": "spacy-wordnet",
 | 
				
			||||||
            "title": "spacy-wordnet",
 | 
					            "title": "spacy-wordnet",
 | 
				
			||||||
| 
						 | 
					@ -2544,35 +2355,6 @@
 | 
				
			||||||
            "category": ["standalone", "pipeline"],
 | 
					            "category": ["standalone", "pipeline"],
 | 
				
			||||||
            "tags": ["linguistics", "computational linguistics", "conll", "conll-u"]
 | 
					            "tags": ["linguistics", "computational linguistics", "conll", "conll-u"]
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "spacy-langdetect",
 | 
					 | 
				
			||||||
            "title": "spacy-langdetect",
 | 
					 | 
				
			||||||
            "slogan": "A fully customizable language detection pipeline for spaCy",
 | 
					 | 
				
			||||||
            "description": "This module allows you to add language detection capabilites to your spaCy pipeline. Also supports custom language detectors!",
 | 
					 | 
				
			||||||
            "pip": "spacy-langdetect",
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from spacy_langdetect import LanguageDetector",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en')",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(LanguageDetector(), name='language_detector', last=True)",
 | 
					 | 
				
			||||||
                "text = 'This is an english text.'",
 | 
					 | 
				
			||||||
                "doc = nlp(text)",
 | 
					 | 
				
			||||||
                "# document level language detection. Think of it like average language of the document!",
 | 
					 | 
				
			||||||
                "print(doc._.language)",
 | 
					 | 
				
			||||||
                "# sentence level language detection",
 | 
					 | 
				
			||||||
                "for sent in doc.sents:",
 | 
					 | 
				
			||||||
                "   print(sent, sent._.language)"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "code_language": "python",
 | 
					 | 
				
			||||||
            "author": "Abhijit Balaji",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "Abhijit-2592",
 | 
					 | 
				
			||||||
                "website": "https://abhijit-2592.github.io/"
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            "github": "Abhijit-2592/spacy-langdetect",
 | 
					 | 
				
			||||||
            "category": ["pipeline"],
 | 
					 | 
				
			||||||
            "tags": ["language-detection"]
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "ludwig",
 | 
					            "id": "ludwig",
 | 
				
			||||||
            "title": "Ludwig",
 | 
					            "title": "Ludwig",
 | 
				
			||||||
| 
						 | 
					@ -3071,35 +2853,6 @@
 | 
				
			||||||
            ],
 | 
					            ],
 | 
				
			||||||
            "author": "Stefan Daniel Dumitrescu, Andrei-Marius Avram"
 | 
					            "author": "Stefan Daniel Dumitrescu, Andrei-Marius Avram"
 | 
				
			||||||
        },
 | 
					        },
 | 
				
			||||||
        {
 | 
					 | 
				
			||||||
            "id": "num_fh",
 | 
					 | 
				
			||||||
            "title": "Numeric Fused-Head",
 | 
					 | 
				
			||||||
            "slogan": "Numeric Fused-Head Identificaiton and Resolution in English",
 | 
					 | 
				
			||||||
            "description": "This package provide a wrapper for the Numeric Fused-Head in English. It provides another information layer on numbers that refer to another entity which is not obvious from the syntactic tree.",
 | 
					 | 
				
			||||||
            "github": "yanaiela/num_fh",
 | 
					 | 
				
			||||||
            "pip": "num_fh",
 | 
					 | 
				
			||||||
            "category": ["pipeline", "research"],
 | 
					 | 
				
			||||||
            "code_example": [
 | 
					 | 
				
			||||||
                "import spacy",
 | 
					 | 
				
			||||||
                "from num_fh import NFH",
 | 
					 | 
				
			||||||
                "nlp = spacy.load('en_core_web_sm')",
 | 
					 | 
				
			||||||
                "nfh = NFH(nlp)",
 | 
					 | 
				
			||||||
                "nlp.add_pipe(nfh, first=False)",
 | 
					 | 
				
			||||||
                "doc = nlp(\"I told you two, that only one of them is the one who will get 2 or 3 icecreams\")",
 | 
					 | 
				
			||||||
                "",
 | 
					 | 
				
			||||||
                "assert doc[16]._.is_nfh == True",
 | 
					 | 
				
			||||||
                "assert doc[18]._.is_nfh == False",
 | 
					 | 
				
			||||||
                "assert doc[3]._.is_deter_nfh == True",
 | 
					 | 
				
			||||||
                "assert doc[16]._.is_deter_nfh == False",
 | 
					 | 
				
			||||||
                "assert len(doc._.nfh) == 4"
 | 
					 | 
				
			||||||
            ],
 | 
					 | 
				
			||||||
            "author": "Yanai Elazar",
 | 
					 | 
				
			||||||
            "author_links": {
 | 
					 | 
				
			||||||
                "github": "yanaiela",
 | 
					 | 
				
			||||||
                "twitter": "yanaiela",
 | 
					 | 
				
			||||||
                "website": "https://yanaiela.github.io"
 | 
					 | 
				
			||||||
            }
 | 
					 | 
				
			||||||
        },
 | 
					 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
            "id": "Healthsea",
 | 
					            "id": "Healthsea",
 | 
				
			||||||
            "title": "Healthsea",
 | 
					            "title": "Healthsea",
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user