mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-21 01:21:58 +03:00
Apply suggestions from code review
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
This commit is contained in:
parent
78c72d3ab7
commit
c8691a27d6
|
@ -55,13 +55,13 @@ architectures and their arguments and hyperparameters.
|
|||
|
||||
| Setting | Description |
|
||||
| ------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `labels_discard` | NER labels that will automatically get a "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to 0. ~~int~~ |
|
||||
| `incl_prior` | Whether or not to include prior probabilities from the KB in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `incl_context` | Whether or not to include the local context in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [EntityLinker](/api/architectures#EntityLinker). ~~Model~~ |
|
||||
| `labels_discard` | NER labels that will automatically get an "NIL" prediction. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `n_sents` | The number of neighbouring sentences to take into account. Defaults to `0`. ~~int~~ |
|
||||
| `incl_prior` | Whether prior probabilities from the KB are included in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `incl_context` | Whether the local context is included in the model. Defaults to `True`. ~~bool~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [`EntityLinker`](/api/architectures#EntityLinker). ~~Model~~ |
|
||||
| `entity_vector_length` | Size of encoding vectors in the KB. Defaults to `64`. ~~int~~ |
|
||||
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
||||
| `use_gold_ents` | Whether entities are copied from the gold docs. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
|
||||
| `get_candidates` | Function that retrieves plausible candidates per entity mention in a given `Iterator[SpanGroup]`. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator). ~~Callable[[KnowledgeBase, Iterator[SpanGroup]], Iterator[Iterable[Iterable[Candidate]]]]~~ |
|
||||
| `generate_empty_kb` <Tag variant="new">3.6</Tag> | Function that generates an empty `KnowledgeBase` object. Defaults to [`spacy.EmptyKB.v2`](/api/architectures#EmptyKB), which generates an empty [`InMemoryLookupKB`](/api/inmemorylookupkb). ~~Callable[[Vocab, int], KnowledgeBase]~~ |
|
||||
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
|
||||
|
|
|
@ -158,8 +158,7 @@ Get a list of all aliases in the knowledge base.
|
|||
Given textual mentions for an arbitrary number of documents as input, retrieve a
|
||||
list of candidate entities of type [`InMemoryCandidate`](/api/kb#candidate) for
|
||||
each mention. The [`EntityLinker`](/api/entitylinker) component passes a
|
||||
generator yielding all mentions to retreive candidates for as
|
||||
[`SpanGroup`](/api/spangroup)) per document. The decision of how to batch
|
||||
generator that yields mentions as [`SpanGroup`](/api/spangroup))s per document. The decision of how to batch
|
||||
candidate retrieval lookups over multiple documents is left up to the
|
||||
implementation of `KnowledgeBase.get_candidates()`.
|
||||
|
||||
|
|
|
@ -63,8 +63,8 @@ The length of the fixed-size entity vectors in the knowledge base.
|
|||
Given textual mentions for an arbitrary number of documents as input, retrieve a
|
||||
list of candidate entities of type [`Candidate`](/api/kb#candidate) for each
|
||||
mention. The [`EntityLinker`](/api/entitylinker) component passes a generator
|
||||
yielding all mentions to retreive candidates for as
|
||||
[`SpanGroup`](/api/spangroup)) per document. The decision of how to batch
|
||||
that yields mentions as [`SpanGroup`](/api/spangroup))s per document.
|
||||
The decision of how to batch
|
||||
candidate retrieval lookups over multiple documents is left up to the
|
||||
implementation of `KnowledgeBase.get_candidates()`.
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user