mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	document individual component API pages
This commit is contained in:
		
							parent
							
								
									a8aa9a8068
								
							
						
					
					
						commit
						c89e07927e
					
				| 
						 | 
					@ -307,6 +307,32 @@ Add a new label to the pipe.
 | 
				
			||||||
| `label`     | The label to add. ~~str~~                                   |
 | 
					| `label`     | The label to add. ~~str~~                                   |
 | 
				
			||||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
					| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that you don't have to call `pipe.add_label` if you provide a
 | 
				
			||||||
 | 
					representative data sample to the [`begin_training`](#begin_training) method. In
 | 
				
			||||||
 | 
					this case, all labels found in the sample will be automatically added to the
 | 
				
			||||||
 | 
					model, and the output dimension will be
 | 
				
			||||||
 | 
					[inferred](/usage/layers-architectures#shape-inference) automatically.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## DependencyParser.set_output {#set_output tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Change the output dimension of the component's model by calling the model's
 | 
				
			||||||
 | 
					attribute `resize_output`. This is a function that takes the original model and
 | 
				
			||||||
 | 
					the new output dimension `nO`, and changes the model in place.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> parser = nlp.add_pipe("parser")
 | 
				
			||||||
 | 
					> parser.set_output(512)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name | Description                       |
 | 
				
			||||||
 | 
					| ---- | --------------------------------- |
 | 
				
			||||||
 | 
					| `nO` | The new output dimension. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					When resizing an already trained model, care should be taken to avoid the
 | 
				
			||||||
 | 
					"catastrophic forgetting" problem.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## DependencyParser.to_disk {#to_disk tag="method"}
 | 
					## DependencyParser.to_disk {#to_disk tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Serialize the pipe to disk.
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -295,6 +295,32 @@ Add a new label to the pipe.
 | 
				
			||||||
| `label`     | The label to add. ~~str~~                                   |
 | 
					| `label`     | The label to add. ~~str~~                                   |
 | 
				
			||||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
					| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that you don't have to call `pipe.add_label` if you provide a
 | 
				
			||||||
 | 
					representative data sample to the [`begin_training`](#begin_training) method. In
 | 
				
			||||||
 | 
					this case, all labels found in the sample will be automatically added to the
 | 
				
			||||||
 | 
					model, and the output dimension will be
 | 
				
			||||||
 | 
					[inferred](/usage/layers-architectures#shape-inference) automatically.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## EntityRecognizer.set_output {#set_output tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Change the output dimension of the component's model by calling the model's
 | 
				
			||||||
 | 
					attribute `resize_output`. This is a function that takes the original model and
 | 
				
			||||||
 | 
					the new output dimension `nO`, and changes the model in place.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> #### Example
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> ```python
 | 
				
			||||||
 | 
					> ner = nlp.add_pipe("ner")
 | 
				
			||||||
 | 
					> ner.set_output(512)
 | 
				
			||||||
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Name | Description                       |
 | 
				
			||||||
 | 
					| ---- | --------------------------------- |
 | 
				
			||||||
 | 
					| `nO` | The new output dimension. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					When resizing an already trained model, care should be taken to avoid the
 | 
				
			||||||
 | 
					"catastrophic forgetting" problem.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## EntityRecognizer.to_disk {#to_disk tag="method"}
 | 
					## EntityRecognizer.to_disk {#to_disk tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Serialize the pipe to disk.
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -258,6 +258,8 @@ context, the original parameters are restored.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Add a new label to the pipe. If the `Morphologizer` should set annotations for
 | 
					Add a new label to the pipe. If the `Morphologizer` should set annotations for
 | 
				
			||||||
both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | 
					both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | 
				
			||||||
 | 
					Raises an error if the output dimension is already set, or if the model has
 | 
				
			||||||
 | 
					already been fully [initialized](#begin_training).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> #### Example
 | 
					> #### Example
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
| 
						 | 
					@ -271,6 +273,12 @@ both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | 
				
			||||||
| `label`     | The label to add. ~~str~~                                   |
 | 
					| `label`     | The label to add. ~~str~~                                   |
 | 
				
			||||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
					| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that you don't have to call `pipe.add_label` if you provide a
 | 
				
			||||||
 | 
					representative data sample to the [`begin_training`](#begin_training) method. In
 | 
				
			||||||
 | 
					this case, all labels found in the sample will be automatically added to the
 | 
				
			||||||
 | 
					model, and the output dimension will be
 | 
				
			||||||
 | 
					[inferred](/usage/layers-architectures#shape-inference) automatically.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Morphologizer.to_disk {#to_disk tag="method"}
 | 
					## Morphologizer.to_disk {#to_disk tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Serialize the pipe to disk.
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -250,7 +250,7 @@ Score a batch of examples.
 | 
				
			||||||
> ```
 | 
					> ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| Name        | Description                                                                                                                       |
 | 
					| Name        | Description                                                                                                                       |
 | 
				
			||||||
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
					| ----------- | --------------------------------------------------------------------------------------------------------------------------------- |
 | 
				
			||||||
| `examples`  | The examples to score. ~~Iterable[Example]~~                                                                                      |
 | 
					| `examples`  | The examples to score. ~~Iterable[Example]~~                                                                                      |
 | 
				
			||||||
| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Dict[str, float]~~ |
 | 
					| **RETURNS** | The scores, produced by [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attribute `"tag"`. ~~Dict[str, float]~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -288,7 +288,8 @@ context, the original parameters are restored.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Tagger.add_label {#add_label tag="method"}
 | 
					## Tagger.add_label {#add_label tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Add a new label to the pipe.
 | 
					Add a new label to the pipe. Raises an error if the output dimension is already
 | 
				
			||||||
 | 
					set, or if the model has already been fully [initialized](#begin_training).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> #### Example
 | 
					> #### Example
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
| 
						 | 
					@ -302,6 +303,12 @@ Add a new label to the pipe.
 | 
				
			||||||
| `label`     | The label to add. ~~str~~                                   |
 | 
					| `label`     | The label to add. ~~str~~                                   |
 | 
				
			||||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
					| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that you don't have to call `pipe.add_label` if you provide a
 | 
				
			||||||
 | 
					representative data sample to the [`begin_training`](#begin_training) method. In
 | 
				
			||||||
 | 
					this case, all labels found in the sample will be automatically added to the
 | 
				
			||||||
 | 
					model, and the output dimension will be
 | 
				
			||||||
 | 
					[inferred](/usage/layers-architectures#shape-inference) automatically.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Tagger.to_disk {#to_disk tag="method"}
 | 
					## Tagger.to_disk {#to_disk tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Serialize the pipe to disk.
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -297,7 +297,8 @@ Modify the pipe's model, to use the given parameter values.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## TextCategorizer.add_label {#add_label tag="method"}
 | 
					## TextCategorizer.add_label {#add_label tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Add a new label to the pipe.
 | 
					Add a new label to the pipe. Raises an error if the output dimension is already
 | 
				
			||||||
 | 
					set, or if the model has already been fully [initialized](#begin_training).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> #### Example
 | 
					> #### Example
 | 
				
			||||||
>
 | 
					>
 | 
				
			||||||
| 
						 | 
					@ -311,6 +312,12 @@ Add a new label to the pipe.
 | 
				
			||||||
| `label`     | The label to add. ~~str~~                                   |
 | 
					| `label`     | The label to add. ~~str~~                                   |
 | 
				
			||||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
					| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that you don't have to call `pipe.add_label` if you provide a
 | 
				
			||||||
 | 
					representative data sample to the [`begin_training`](#begin_training) method. In
 | 
				
			||||||
 | 
					this case, all labels found in the sample will be automatically added to the
 | 
				
			||||||
 | 
					model, and the output dimension will be
 | 
				
			||||||
 | 
					[inferred](/usage/layers-architectures#shape-inference) automatically.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## TextCategorizer.to_disk {#to_disk tag="method"}
 | 
					## TextCategorizer.to_disk {#to_disk tag="method"}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Serialize the pipe to disk.
 | 
					Serialize the pipe to disk.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user