Update sentence recognizer (#5109)

* Update sentence recognizer

* rename `sentrec` to `senter`
* use `spacy.HashEmbedCNN.v1` by default
* update to follow `Tagger` modifications
* remove component methods that can be inherited from `Tagger`
* add simple initialization and overfitting pipeline tests

* Update serialization test for senter
This commit is contained in:
adrianeboyd 2020-03-06 14:45:02 +01:00 committed by GitHub
parent 6ac9fc0619
commit c95ce96c44
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 77 additions and 45 deletions

View File

@ -157,6 +157,8 @@ def train(
config_loc = default_dir / "ner_defaults.cfg" config_loc = default_dir / "ner_defaults.cfg"
elif pipe == "textcat": elif pipe == "textcat":
config_loc = default_dir / "textcat_defaults.cfg" config_loc = default_dir / "textcat_defaults.cfg"
elif pipe == "senter":
config_loc = default_dir / "senter_defaults.cfg"
else: else:
raise ValueError(f"Component {pipe} currently not supported.") raise ValueError(f"Component {pipe} currently not supported.")
pipe_cfg = util.load_config(config_loc, create_objects=False) pipe_cfg = util.load_config(config_loc, create_objects=False)
@ -221,6 +223,8 @@ def train(
config_loc = default_dir / "ner_defaults.cfg" config_loc = default_dir / "ner_defaults.cfg"
elif pipe == "textcat": elif pipe == "textcat":
config_loc = default_dir / "textcat_defaults.cfg" config_loc = default_dir / "textcat_defaults.cfg"
elif pipe == "senter":
config_loc = default_dir / "senter_defaults.cfg"
else: else:
raise ValueError(f"Component {pipe} currently not supported.") raise ValueError(f"Component {pipe} currently not supported.")
pipe_cfg = util.load_config(config_loc, create_objects=False) pipe_cfg = util.load_config(config_loc, create_objects=False)
@ -559,7 +563,7 @@ def _score_for_model(meta):
mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3) mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3)
if "textcat" in pipes: if "textcat" in pipes:
mean_acc.append(acc["textcat_score"]) mean_acc.append(acc["textcat_score"])
if "sentrec" in pipes: if "senter" in pipes:
mean_acc.append((acc["sent_p"] + acc["sent_r"] + acc["sent_f"]) / 3) mean_acc.append((acc["sent_p"] + acc["sent_r"] + acc["sent_f"]) / 3)
return sum(mean_acc) / len(mean_acc) return sum(mean_acc) / len(mean_acc)
@ -638,7 +642,7 @@ def _get_metrics(component):
return ("tags_acc",) return ("tags_acc",)
elif component == "ner": elif component == "ner":
return ("ents_f", "ents_p", "ents_r", "ents_per_type") return ("ents_f", "ents_p", "ents_r", "ents_per_type")
elif component == "sentrec": elif component == "senter":
return ("sent_f", "sent_p", "sent_r") return ("sent_f", "sent_p", "sent_r")
elif component == "textcat": elif component == "textcat":
return ("textcat_score",) return ("textcat_score",)
@ -665,9 +669,9 @@ def _configure_training_output(pipeline, use_gpu, has_beam_widths):
elif pipe == "textcat": elif pipe == "textcat":
row_head.extend(["Textcat Loss", "Textcat"]) row_head.extend(["Textcat Loss", "Textcat"])
output_stats.extend(["textcat_loss", "textcat_score"]) output_stats.extend(["textcat_loss", "textcat_score"])
elif pipe == "sentrec": elif pipe == "senter":
row_head.extend(["Sentrec Loss", "Sent P", "Sent R", "Sent F"]) row_head.extend(["Senter Loss", "Sent P", "Sent R", "Sent F"])
output_stats.extend(["sentrec_loss", "sent_p", "sent_r", "sent_f"]) output_stats.extend(["senter_loss", "sent_p", "sent_r", "sent_f"])
row_head.extend(["Token %", "CPU WPS"]) row_head.extend(["Token %", "CPU WPS"])
output_stats.extend(["token_acc", "cpu_wps"]) output_stats.extend(["token_acc", "cpu_wps"])
@ -693,7 +697,7 @@ def _get_progress(
scores["ner_loss"] = losses.get("ner", 0.0) scores["ner_loss"] = losses.get("ner", 0.0)
scores["tag_loss"] = losses.get("tagger", 0.0) scores["tag_loss"] = losses.get("tagger", 0.0)
scores["textcat_loss"] = losses.get("textcat", 0.0) scores["textcat_loss"] = losses.get("textcat", 0.0)
scores["sentrec_loss"] = losses.get("sentrec", 0.0) scores["senter_loss"] = losses.get("senter", 0.0)
scores["cpu_wps"] = cpu_wps scores["cpu_wps"] = cpu_wps
scores["gpu_wps"] = gpu_wps or 0.0 scores["gpu_wps"] = gpu_wps or 0.0
scores.update(dev_scores) scores.update(dev_scores)

View File

@ -190,7 +190,7 @@ class Language(object):
default_textcat_config, default_textcat_config,
default_nel_config, default_nel_config,
default_morphologizer_config, default_morphologizer_config,
default_sentrec_config, default_senter_config,
default_tensorizer_config, default_tensorizer_config,
default_tok2vec_config, default_tok2vec_config,
) )
@ -202,7 +202,7 @@ class Language(object):
"textcat": default_textcat_config(), "textcat": default_textcat_config(),
"entity_linker": default_nel_config(), "entity_linker": default_nel_config(),
"morphologizer": default_morphologizer_config(), "morphologizer": default_morphologizer_config(),
"sentrec": default_sentrec_config(), "senter": default_senter_config(),
"tensorizer": default_tensorizer_config(), "tensorizer": default_tensorizer_config(),
"tok2vec": default_tok2vec_config(), "tok2vec": default_tok2vec_config(),
} }
@ -267,8 +267,8 @@ class Language(object):
return self.get_pipe("entity_linker") return self.get_pipe("entity_linker")
@property @property
def sentrec(self): def senter(self):
return self.get_pipe("sentrec") return self.get_pipe("senter")
@property @property
def matcher(self): def matcher(self):

View File

@ -43,13 +43,13 @@ def default_ner():
return util.load_config(loc, create_objects=True)["model"] return util.load_config(loc, create_objects=True)["model"]
def default_sentrec_config(): def default_senter_config():
loc = Path(__file__).parent / "sentrec_defaults.cfg" loc = Path(__file__).parent / "senter_defaults.cfg"
return util.load_config(loc, create_objects=False) return util.load_config(loc, create_objects=False)
def default_sentrec(): def default_senter():
loc = Path(__file__).parent / "sentrec_defaults.cfg" loc = Path(__file__).parent / "senter_defaults.cfg"
return util.load_config(loc, create_objects=True)["model"] return util.load_config(loc, create_objects=True)["model"]

View File

@ -2,7 +2,7 @@
@architectures = "spacy.Tagger.v1" @architectures = "spacy.Tagger.v1"
[model.tok2vec] [model.tok2vec]
@architectures = "spacy.HashCharEmbedCNN.v1" @architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null pretrained_vectors = null
width = 12 width = 12
depth = 1 depth = 1
@ -10,5 +10,3 @@ embed_size = 2000
window_size = 1 window_size = 1
maxout_pieces = 2 maxout_pieces = 2
subword_features = true subword_features = true
nM = 64
nC = 8

View File

@ -650,7 +650,7 @@ class Tagger(Pipe):
return self return self
@component("sentrec", assigns=["token.is_sent_start"]) @component("senter", assigns=["token.is_sent_start"])
class SentenceRecognizer(Tagger): class SentenceRecognizer(Tagger):
"""Pipeline component for sentence segmentation. """Pipeline component for sentence segmentation.
@ -670,7 +670,7 @@ class SentenceRecognizer(Tagger):
# are 0 # are 0
return tuple(["I", "S"]) return tuple(["I", "S"])
def set_annotations(self, docs, batch_tag_ids, **_): def set_annotations(self, docs, batch_tag_ids):
if isinstance(docs, Doc): if isinstance(docs, Doc):
docs = [docs] docs = [docs]
cdef Doc doc cdef Doc doc
@ -686,24 +686,6 @@ class SentenceRecognizer(Tagger):
else: else:
doc.c[j].sent_start = -1 doc.c[j].sent_start = -1
def update(self, examples, drop=0., sgd=None, losses=None):
examples = Example.to_example_objects(examples)
if losses is not None and self.name not in losses:
losses[self.name] = 0.
if not any(len(ex.doc) if ex.doc else 0 for ex in examples):
# Handle cases where there are no tokens in any docs.
return
set_dropout_rate(self.model, drop)
tag_scores, bp_tag_scores = self.model.begin_update([ex.doc for ex in examples])
loss, d_tag_scores = self.get_loss(examples, tag_scores)
bp_tag_scores(d_tag_scores)
if sgd is not None:
self.model.finish_update(sgd)
if losses is not None:
losses[self.name] += loss
def get_loss(self, examples, scores): def get_loss(self, examples, scores):
scores = self.model.ops.flatten(scores) scores = self.model.ops.flatten(scores)
tag_index = range(len(self.labels)) tag_index = range(len(self.labels))
@ -732,9 +714,9 @@ class SentenceRecognizer(Tagger):
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None, def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
**kwargs): **kwargs):
cdef Vocab vocab = self.vocab
self.set_output(len(self.labels)) self.set_output(len(self.labels))
self.model.initialize() self.model.initialize()
link_vectors_to_models(self.vocab)
if sgd is None: if sgd is None:
sgd = self.create_optimizer() sgd = self.create_optimizer()
return sgd return sgd
@ -742,10 +724,6 @@ class SentenceRecognizer(Tagger):
def add_label(self, label, values=None): def add_label(self, label, values=None):
raise NotImplementedError raise NotImplementedError
def use_params(self, params):
with self.model.use_params(params):
yield
def to_bytes(self, exclude=tuple(), **kwargs): def to_bytes(self, exclude=tuple(), **kwargs):
serialize = {} serialize = {}
serialize["model"] = self.model.to_bytes serialize["model"] = self.model.to_bytes

View File

@ -0,0 +1,52 @@
import pytest
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.tests.util import make_tempdir
def test_label_types():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("senter"))
with pytest.raises(NotImplementedError):
nlp.get_pipe("senter").add_label("A")
SENT_STARTS = [0] * 14
SENT_STARTS[0] = 1
SENT_STARTS[5] = 1
SENT_STARTS[9] = 1
TRAIN_DATA = [
("I like green eggs. Eat blue ham. I like purple eggs.", {"sent_starts": SENT_STARTS}),
("She likes purple eggs. They hate ham. You like yellow eggs.", {"sent_starts": SENT_STARTS}),
]
def test_overfitting_IO():
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
nlp = English()
senter = nlp.create_pipe("senter")
nlp.add_pipe(senter)
optimizer = nlp.begin_training()
for i in range(200):
losses = {}
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
assert losses["senter"] < 0.0001
# test the trained model
test_text = "I like eggs. There is ham. She likes ham."
doc = nlp(test_text)
gold_sent_starts = [0] * 12
gold_sent_starts[0] = 1
gold_sent_starts[4] = 1
gold_sent_starts[8] = 1
assert gold_sent_starts == [int(t.is_sent_start) for t in doc]
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert gold_sent_starts == [int(t.is_sent_start) for t in doc2]

View File

@ -2,7 +2,7 @@ import pytest
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
from spacy.pipeline import Tensorizer, TextCategorizer, SentenceRecognizer from spacy.pipeline import Tensorizer, TextCategorizer, SentenceRecognizer
from spacy.ml.models.defaults import default_parser, default_tensorizer, default_tagger from spacy.ml.models.defaults import default_parser, default_tensorizer, default_tagger
from spacy.ml.models.defaults import default_textcat, default_sentrec from spacy.ml.models.defaults import default_textcat, default_senter
from ..util import make_tempdir from ..util import make_tempdir
@ -146,7 +146,7 @@ def test_serialize_pipe_exclude(en_vocab, Parser):
def test_serialize_sentencerecognizer(en_vocab): def test_serialize_sentencerecognizer(en_vocab):
sr = SentenceRecognizer(en_vocab, default_sentrec()) sr = SentenceRecognizer(en_vocab, default_senter())
sr_b = sr.to_bytes() sr_b = sr.to_bytes()
sr_d = SentenceRecognizer(en_vocab, default_sentrec()).from_bytes(sr_b) sr_d = SentenceRecognizer(en_vocab, default_senter()).from_bytes(sr_b)
assert sr.to_bytes() == sr_d.to_bytes() assert sr.to_bytes() == sr_d.to_bytes()