mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
* Refactor tokens, moving classes into a module instead of a single file
This commit is contained in:
parent
d27899658e
commit
c99387155f
|
@ -1,89 +0,0 @@
|
|||
from libc.stdint cimport uint32_t
|
||||
|
||||
from numpy cimport ndarray
|
||||
cimport numpy as np
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.typedefs cimport atom_t
|
||||
|
||||
from .typedefs cimport flags_t, attr_id_t, attr_t
|
||||
from .parts_of_speech cimport univ_pos_t
|
||||
from .structs cimport Morphology, TokenC, LexemeC
|
||||
from .vocab cimport Vocab
|
||||
from .strings cimport StringStore
|
||||
|
||||
|
||||
ctypedef const LexemeC* const_Lexeme_ptr
|
||||
ctypedef TokenC* TokenC_ptr
|
||||
|
||||
ctypedef fused LexemeOrToken:
|
||||
const_Lexeme_ptr
|
||||
TokenC_ptr
|
||||
|
||||
|
||||
cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil
|
||||
cdef attr_t get_token_attr(const TokenC* lex, attr_id_t feat_name) nogil
|
||||
|
||||
cdef inline bint check_flag(const LexemeC* lexeme, attr_id_t flag_id) nogil:
|
||||
return lexeme.flags & (1 << flag_id)
|
||||
|
||||
|
||||
cdef class Doc:
|
||||
cdef Pool mem
|
||||
cdef Vocab vocab
|
||||
|
||||
cdef TokenC* data
|
||||
|
||||
cdef list _py_tokens
|
||||
cdef unicode _string
|
||||
cdef tuple _tag_strings
|
||||
|
||||
cdef public bint is_tagged
|
||||
cdef public bint is_parsed
|
||||
|
||||
cdef int length
|
||||
cdef int max_length
|
||||
|
||||
cdef int push_back(self, int i, LexemeOrToken lex_or_tok) except -1
|
||||
|
||||
cpdef np.ndarray to_array(self, object features)
|
||||
|
||||
cdef int set_parse(self, const TokenC* parsed) except -1
|
||||
|
||||
|
||||
cdef class Token:
|
||||
cdef Vocab vocab
|
||||
cdef unicode _string
|
||||
|
||||
cdef const TokenC* c
|
||||
cdef readonly int i
|
||||
cdef int array_len
|
||||
cdef bint _owns_c_data
|
||||
|
||||
|
||||
cdef Doc _seq
|
||||
|
||||
@staticmethod
|
||||
cdef inline Token cinit(Vocab vocab, unicode string,
|
||||
const TokenC* token, int offset, int array_len,
|
||||
Doc parent_seq):
|
||||
if offset < 0 or offset >= array_len:
|
||||
|
||||
msg = "Attempt to access token at %d, max length %d"
|
||||
raise IndexError(msg % (offset, array_len))
|
||||
if parent_seq._py_tokens[offset] is not None:
|
||||
return parent_seq._py_tokens[offset]
|
||||
|
||||
cdef Token self = Token.__new__(Token, vocab, string)
|
||||
|
||||
self.c = token
|
||||
self.i = offset
|
||||
self.array_len = array_len
|
||||
|
||||
self._seq = parent_seq
|
||||
self._seq._py_tokens[offset] = self
|
||||
return self
|
||||
|
||||
cdef int take_ownership_of_c_data(self) except -1
|
||||
|
||||
cpdef bint check_flag(self, attr_id_t flag_id) except -1
|
716
spacy/tokens.pyx
716
spacy/tokens.pyx
|
@ -1,716 +0,0 @@
|
|||
# cython: embedsignature=True
|
||||
from libc.string cimport memset
|
||||
|
||||
from preshed.maps cimport PreshMap
|
||||
from preshed.counter cimport PreshCounter
|
||||
|
||||
from .strings cimport slice_unicode
|
||||
from .vocab cimport EMPTY_LEXEME
|
||||
from .typedefs cimport attr_id_t, attr_t
|
||||
from .typedefs cimport LEMMA
|
||||
from .typedefs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
|
||||
from .typedefs cimport POS, LEMMA, TAG, DEP
|
||||
from .parts_of_speech import UNIV_POS_NAMES
|
||||
from .parts_of_speech cimport CONJ, PUNCT
|
||||
from .lexeme cimport check_flag
|
||||
from .spans import Span
|
||||
from .structs cimport UniStr
|
||||
|
||||
from .serialize import BitArray
|
||||
|
||||
from unidecode import unidecode
|
||||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||||
from cython.view cimport array as cvarray
|
||||
cimport numpy as np
|
||||
np.import_array()
|
||||
|
||||
import numpy
|
||||
|
||||
cimport cython
|
||||
|
||||
from cpython.mem cimport PyMem_Malloc, PyMem_Free
|
||||
from libc.string cimport memcpy
|
||||
|
||||
|
||||
DEF PADDING = 5
|
||||
|
||||
|
||||
cdef int bounds_check(int i, int length, int padding) except -1:
|
||||
if (i + padding) < 0:
|
||||
raise IndexError
|
||||
if (i - padding) >= length:
|
||||
raise IndexError
|
||||
|
||||
|
||||
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
|
||||
if feat_name == LEMMA:
|
||||
return token.lemma
|
||||
elif feat_name == POS:
|
||||
return token.pos
|
||||
elif feat_name == TAG:
|
||||
return token.tag
|
||||
elif feat_name == DEP:
|
||||
return token.dep
|
||||
else:
|
||||
return get_lex_attr(token.lex, feat_name)
|
||||
|
||||
|
||||
cdef attr_t get_lex_attr(const LexemeC* lex, attr_id_t feat_name) nogil:
|
||||
if feat_name < (sizeof(flags_t) * 8):
|
||||
return check_flag(lex, feat_name)
|
||||
elif feat_name == ID:
|
||||
return lex.id
|
||||
elif feat_name == ORTH:
|
||||
return lex.orth
|
||||
elif feat_name == LOWER:
|
||||
return lex.lower
|
||||
elif feat_name == NORM:
|
||||
return lex.norm
|
||||
elif feat_name == SHAPE:
|
||||
return lex.shape
|
||||
elif feat_name == PREFIX:
|
||||
return lex.prefix
|
||||
elif feat_name == SUFFIX:
|
||||
return lex.suffix
|
||||
elif feat_name == LENGTH:
|
||||
return lex.length
|
||||
elif feat_name == CLUSTER:
|
||||
return lex.cluster
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
cdef class Doc:
|
||||
"""
|
||||
Container class for annotated text. Constructed via English.__call__ or
|
||||
Tokenizer.__call__.
|
||||
"""
|
||||
def __cinit__(self, Vocab vocab, unicode string):
|
||||
self.vocab = vocab
|
||||
self._string = string
|
||||
string_length = len(string)
|
||||
if string_length >= 3:
|
||||
size = int(string_length / 3.0)
|
||||
else:
|
||||
size = 5
|
||||
self.mem = Pool()
|
||||
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
|
||||
# However, we need to remember the true starting places, so that we can
|
||||
# realloc.
|
||||
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
|
||||
cdef int i
|
||||
for i in range(size + (PADDING*2)):
|
||||
data_start[i].lex = &EMPTY_LEXEME
|
||||
self.data = data_start + PADDING
|
||||
self.max_length = size
|
||||
self.length = 0
|
||||
self.is_tagged = False
|
||||
self.is_parsed = False
|
||||
self._py_tokens = []
|
||||
|
||||
def __getitem__(self, object i):
|
||||
"""Retrieve a token.
|
||||
|
||||
The Python Token objects are created lazily from internal C data, and
|
||||
cached in _py_tokens
|
||||
|
||||
Returns:
|
||||
token (Token):
|
||||
"""
|
||||
if isinstance(i, slice):
|
||||
if i.step is not None:
|
||||
raise ValueError("Stepped slices not supported in Span objects."
|
||||
"Try: list(doc)[start:stop:step] instead.")
|
||||
return Span(self, i.start, i.stop, label=0)
|
||||
|
||||
if i < 0:
|
||||
i = self.length + i
|
||||
bounds_check(i, self.length, PADDING)
|
||||
return Token.cinit(self.vocab, self._string,
|
||||
&self.data[i], i, self.length,
|
||||
self)
|
||||
|
||||
def __iter__(self):
|
||||
"""Iterate over the tokens.
|
||||
|
||||
Yields:
|
||||
token (Token):
|
||||
"""
|
||||
for i in range(self.length):
|
||||
yield Token.cinit(self.vocab, self._string,
|
||||
&self.data[i], i, self.length,
|
||||
self)
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __unicode__(self):
|
||||
cdef const TokenC* last = &self.data[self.length - 1]
|
||||
return self._string[:last.idx + last.lex.length]
|
||||
|
||||
@property
|
||||
def string(self):
|
||||
return unicode(self)
|
||||
|
||||
@property
|
||||
def ents(self):
|
||||
"""Yields named-entity Span objects.
|
||||
|
||||
Iterate over the span to get individual Token objects, or access the label:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
||||
>>> ents = list(tokens.ents)
|
||||
>>> ents[0].label, ents[0].label_, ''.join(t.orth_ for t in ents[0])
|
||||
(112504, u'PERSON', u'Best ')
|
||||
"""
|
||||
cdef int i
|
||||
cdef const TokenC* token
|
||||
cdef int start = -1
|
||||
cdef int label = 0
|
||||
for i in range(self.length):
|
||||
token = &self.data[i]
|
||||
if token.ent_iob == 1:
|
||||
assert start != -1
|
||||
pass
|
||||
elif token.ent_iob == 2:
|
||||
if start != -1:
|
||||
yield Span(self, start, i, label=label)
|
||||
start = -1
|
||||
label = 0
|
||||
elif token.ent_iob == 3:
|
||||
if start != -1:
|
||||
yield Span(self, start, i, label=label)
|
||||
start = i
|
||||
label = token.ent_type
|
||||
if start != -1:
|
||||
yield Span(self, start, self.length, label=label)
|
||||
|
||||
@property
|
||||
def sents(self):
|
||||
"""
|
||||
Yield a list of sentence Span objects, calculated from the dependency parse.
|
||||
"""
|
||||
cdef int i
|
||||
cdef Doc sent = Doc(self.vocab, self._string[self.data[0].idx:])
|
||||
start = 0
|
||||
for i in range(1, self.length):
|
||||
if self.data[i].sent_start:
|
||||
yield Span(self, start, i)
|
||||
start = i
|
||||
yield Span(self, start, self.length)
|
||||
|
||||
cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1:
|
||||
if self.length == self.max_length:
|
||||
self._realloc(self.length * 2)
|
||||
cdef TokenC* t = &self.data[self.length]
|
||||
if LexemeOrToken is TokenC_ptr:
|
||||
t[0] = lex_or_tok[0]
|
||||
else:
|
||||
t.lex = lex_or_tok
|
||||
t.idx = idx
|
||||
self.length += 1
|
||||
self._py_tokens.append(None)
|
||||
return idx + t.lex.length
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||||
"""Given a list of M attribute IDs, export the tokens to a numpy ndarray
|
||||
of shape N*M, where N is the length of the sentence.
|
||||
|
||||
Arguments:
|
||||
attr_ids (list[int]): A list of attribute ID ints.
|
||||
|
||||
Returns:
|
||||
feat_array (numpy.ndarray[long, ndim=2]):
|
||||
A feature matrix, with one row per word, and one column per attribute
|
||||
indicated in the input attr_ids.
|
||||
"""
|
||||
cdef int i, j
|
||||
cdef attr_id_t feature
|
||||
cdef np.ndarray[long, ndim=2] output
|
||||
# Make an array from the attributes --- otherwise our inner loop is Python
|
||||
# dict iteration.
|
||||
cdef np.ndarray[long, ndim=1] attr_ids = numpy.asarray(py_attr_ids)
|
||||
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int)
|
||||
for i in range(self.length):
|
||||
for j, feature in enumerate(attr_ids):
|
||||
output[i, j] = get_token_attr(&self.data[i], feature)
|
||||
return output
|
||||
|
||||
def count_by(self, attr_id_t attr_id, exclude=None):
|
||||
"""Produce a dict of {attribute (int): count (ints)} frequencies, keyed
|
||||
by the values of the given attribute ID.
|
||||
|
||||
>>> from spacy.en import English, attrs
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp(u'apple apple orange banana')
|
||||
>>> tokens.count_by(attrs.ORTH)
|
||||
{12800L: 1, 11880L: 2, 7561L: 1}
|
||||
>>> tokens.to_array([attrs.ORTH])
|
||||
array([[11880],
|
||||
[11880],
|
||||
[ 7561],
|
||||
[12800]])
|
||||
"""
|
||||
cdef int i
|
||||
cdef attr_t attr
|
||||
cdef size_t count
|
||||
|
||||
cdef PreshCounter counts = PreshCounter(2 ** 8)
|
||||
for i in range(self.length):
|
||||
if exclude is not None and exclude(self[i]):
|
||||
continue
|
||||
attr = get_token_attr(&self.data[i], attr_id)
|
||||
counts.inc(attr, 1)
|
||||
return dict(counts)
|
||||
|
||||
def _realloc(self, new_size):
|
||||
self.max_length = new_size
|
||||
n = new_size + (PADDING * 2)
|
||||
# What we're storing is a "padded" array. We've jumped forward PADDING
|
||||
# places, and are storing the pointer to that. This way, we can access
|
||||
# words out-of-bounds, and get out-of-bounds markers.
|
||||
# Now that we want to realloc, we need the address of the true start,
|
||||
# so we jump the pointer back PADDING places.
|
||||
cdef TokenC* data_start = self.data - PADDING
|
||||
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
|
||||
self.data = data_start + PADDING
|
||||
cdef int i
|
||||
for i in range(self.length, self.max_length + PADDING):
|
||||
self.data[i].lex = &EMPTY_LEXEME
|
||||
|
||||
cdef int set_parse(self, const TokenC* parsed) except -1:
|
||||
# TODO: This method is fairly misleading atm. It's used by GreedyParser
|
||||
# to actually apply the parse calculated. Need to rethink this.
|
||||
self._py_tokens = [None] * self.length
|
||||
self.is_parsed = True
|
||||
for i in range(self.length):
|
||||
self.data[i] = parsed[i]
|
||||
|
||||
def merge(self, int start_idx, int end_idx, unicode tag, unicode lemma,
|
||||
unicode ent_type):
|
||||
"""Merge a multi-word expression into a single token. Currently
|
||||
experimental; API is likely to change."""
|
||||
cdef int i
|
||||
cdef int start = -1
|
||||
cdef int end = -1
|
||||
for i in range(self.length):
|
||||
if self.data[i].idx == start_idx:
|
||||
start = i
|
||||
if (self.data[i].idx + self.data[i].lex.length) == end_idx:
|
||||
if start == -1:
|
||||
return None
|
||||
end = i + 1
|
||||
break
|
||||
else:
|
||||
return None
|
||||
# Get LexemeC for newly merged token
|
||||
cdef UniStr new_orth_c
|
||||
slice_unicode(&new_orth_c, self._string, start_idx, end_idx)
|
||||
cdef const LexemeC* lex = self.vocab.get(self.mem, &new_orth_c)
|
||||
# House the new merged token where it starts
|
||||
cdef TokenC* token = &self.data[start]
|
||||
# Update fields
|
||||
token.lex = lex
|
||||
# What to do about morphology??
|
||||
# TODO: token.morph = ???
|
||||
token.tag = self.vocab.strings[tag]
|
||||
token.lemma = self.vocab.strings[lemma]
|
||||
if ent_type == 'O':
|
||||
token.ent_iob = 2
|
||||
token.ent_type = 0
|
||||
else:
|
||||
token.ent_iob = 3
|
||||
token.ent_type = self.vocab.strings[ent_type]
|
||||
# Fix dependencies
|
||||
# Begin by setting all the head indices to absolute token positions
|
||||
# This is easier to work with for now than the offsets
|
||||
for i in range(self.length):
|
||||
self.data[i].head += i
|
||||
# Find the head of the merged token, and its dep relation
|
||||
outer_heads = {}
|
||||
for i in range(start, end):
|
||||
head_idx = self.data[i].head
|
||||
if head_idx == i or head_idx < start or head_idx >= end:
|
||||
# Don't consider "heads" which are actually dominated by a word
|
||||
# in the region we're merging
|
||||
gp = head_idx
|
||||
while self.data[gp].head != gp:
|
||||
if start <= gp < end:
|
||||
break
|
||||
gp = self.data[gp].head
|
||||
else:
|
||||
# If we have multiple words attaching to the same head,
|
||||
# but with different dep labels, we're preferring the last
|
||||
# occurring dep label. Shrug. What else could we do, I guess?
|
||||
outer_heads[head_idx] = self.data[i].dep
|
||||
|
||||
token.head, token.dep = max(outer_heads.items())
|
||||
# Adjust deps before shrinking tokens
|
||||
# Tokens which point into the merged token should now point to it
|
||||
# Subtract the offset from all tokens which point to >= end
|
||||
offset = (end - start) - 1
|
||||
for i in range(self.length):
|
||||
head_idx = self.data[i].head
|
||||
if start <= head_idx < end:
|
||||
self.data[i].head = start
|
||||
elif head_idx >= end:
|
||||
self.data[i].head -= offset
|
||||
# TODO: Fix left and right deps
|
||||
# Now compress the token array
|
||||
for i in range(end, self.length):
|
||||
self.data[i - offset] = self.data[i]
|
||||
for i in range(self.length - offset, self.length):
|
||||
memset(&self.data[i], 0, sizeof(TokenC))
|
||||
self.data[i].lex = &EMPTY_LEXEME
|
||||
self.length -= offset
|
||||
for i in range(self.length):
|
||||
# ...And, set heads back to a relative position
|
||||
self.data[i].head -= i
|
||||
|
||||
# Clear cached Python objects
|
||||
self._py_tokens = [None] * self.length
|
||||
# Return the merged Python object
|
||||
return self[start]
|
||||
|
||||
def _has_trailing_space(self, int i):
|
||||
cdef int end_idx = self.data[i].idx + self.data[i].lex.length
|
||||
if end_idx >= len(self._string):
|
||||
return False
|
||||
else:
|
||||
return self._string[end_idx] == u' '
|
||||
|
||||
def serialize(self, bits=None):
|
||||
if bits is None:
|
||||
bits = BitArray()
|
||||
codec = self.vocab.codec
|
||||
ids = numpy.zeros(shape=(len(self),), dtype=numpy.uint32)
|
||||
cdef int i
|
||||
for i in range(self.length):
|
||||
ids[i] = self.data[i].lex.id
|
||||
bits = codec.encode(ids, bits=bits)
|
||||
for i in range(self.length):
|
||||
bits.append(self._has_trailing_space(i))
|
||||
return bits
|
||||
|
||||
@staticmethod
|
||||
def deserialize(Vocab vocab, bits):
|
||||
biterator = iter(bits)
|
||||
ids = vocab.codec.decode(biterator)
|
||||
spaces = []
|
||||
for bit in biterator:
|
||||
spaces.append(bit)
|
||||
if len(spaces) == len(ids):
|
||||
break
|
||||
string = u''
|
||||
cdef const LexemeC* lex
|
||||
for id_, space in zip(ids, spaces):
|
||||
lex = vocab.lexemes[id_]
|
||||
string += vocab.strings[lex.orth]
|
||||
if space:
|
||||
string += u' '
|
||||
cdef Doc doc = Doc(vocab, string)
|
||||
cdef int idx = 0
|
||||
for i, id_ in enumerate(ids):
|
||||
doc.push_back(idx, vocab.lexemes[id_])
|
||||
idx += vocab.lexemes[id_].length
|
||||
if spaces[i]:
|
||||
idx += 1
|
||||
return doc
|
||||
|
||||
# Enhance backwards compatibility by aliasing Doc to Tokens, for now
|
||||
Tokens = Doc
|
||||
|
||||
|
||||
cdef class Token:
|
||||
"""An individual token --- i.e. a word, a punctuation symbol, etc. Created
|
||||
via Doc.__getitem__ and Doc.__iter__.
|
||||
"""
|
||||
def __cinit__(self, Vocab vocab, unicode string):
|
||||
self.vocab = vocab
|
||||
self._string = string
|
||||
|
||||
def __dealloc__(self):
|
||||
if self._owns_c_data:
|
||||
# Cast through const, if we own the data
|
||||
PyMem_Free(<void*>self.c)
|
||||
|
||||
def __len__(self):
|
||||
return self.c.lex.length
|
||||
|
||||
def __unicode__(self):
|
||||
return self.string
|
||||
|
||||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||||
return check_flag(self.c.lex, flag_id)
|
||||
|
||||
cdef int take_ownership_of_c_data(self) except -1:
|
||||
owned_data = <TokenC*>PyMem_Malloc(sizeof(TokenC) * self.array_len)
|
||||
memcpy(owned_data, self.c, sizeof(TokenC) * self.array_len)
|
||||
self.c = owned_data
|
||||
self._owns_c_data = True
|
||||
|
||||
def nbor(self, int i=1):
|
||||
return Token.cinit(self.vocab, self._string,
|
||||
self.c, self.i, self.array_len,
|
||||
self._seq)
|
||||
|
||||
property lex_id:
|
||||
def __get__(self):
|
||||
return self.c.lex.id
|
||||
|
||||
property string:
|
||||
def __get__(self):
|
||||
if (self.i+1) == self._seq.length:
|
||||
return self._string[self.c.idx:]
|
||||
cdef int next_idx = (self.c + 1).idx
|
||||
if next_idx < self.c.idx:
|
||||
next_idx = self.c.idx + self.c.lex.length
|
||||
return self._string[self.c.idx:next_idx]
|
||||
|
||||
property prob:
|
||||
def __get__(self):
|
||||
return self.c.lex.prob
|
||||
|
||||
property idx:
|
||||
def __get__(self):
|
||||
return self.c.idx
|
||||
|
||||
property cluster:
|
||||
def __get__(self):
|
||||
return self.c.lex.cluster
|
||||
|
||||
property orth:
|
||||
def __get__(self):
|
||||
return self.c.lex.orth
|
||||
|
||||
property lower:
|
||||
def __get__(self):
|
||||
return self.c.lex.lower
|
||||
|
||||
property norm:
|
||||
def __get__(self):
|
||||
return self.c.lex.norm
|
||||
|
||||
property shape:
|
||||
def __get__(self):
|
||||
return self.c.lex.shape
|
||||
|
||||
property prefix:
|
||||
def __get__(self):
|
||||
return self.c.lex.prefix
|
||||
|
||||
property suffix:
|
||||
def __get__(self):
|
||||
return self.c.lex.suffix
|
||||
|
||||
property lemma:
|
||||
def __get__(self):
|
||||
return self.c.lemma
|
||||
|
||||
property pos:
|
||||
def __get__(self):
|
||||
return self.c.pos
|
||||
|
||||
property tag:
|
||||
def __get__(self):
|
||||
return self.c.tag
|
||||
|
||||
property dep:
|
||||
def __get__(self):
|
||||
return self.c.dep
|
||||
|
||||
property repvec:
|
||||
def __get__(self):
|
||||
cdef int length = self.vocab.repvec_length
|
||||
repvec_view = <float[:length,]>self.c.lex.repvec
|
||||
return numpy.asarray(repvec_view)
|
||||
|
||||
property n_lefts:
|
||||
def __get__(self):
|
||||
cdef int n = 0
|
||||
cdef const TokenC* ptr = self.c - self.i
|
||||
while ptr != self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
n += 1
|
||||
ptr += 1
|
||||
return n
|
||||
|
||||
property n_rights:
|
||||
def __get__(self):
|
||||
cdef int n = 0
|
||||
cdef const TokenC* ptr = self.c + (self.array_len - self.i)
|
||||
while ptr != self.c:
|
||||
if ptr + ptr.head == self.c:
|
||||
n += 1
|
||||
ptr -= 1
|
||||
return n
|
||||
|
||||
property lefts:
|
||||
def __get__(self):
|
||||
"""The leftward immediate children of the word, in the syntactic
|
||||
dependency parse.
|
||||
"""
|
||||
cdef const TokenC* ptr = self.c - self.i
|
||||
while ptr < self.c:
|
||||
# If this head is still to the right of us, we can skip to it
|
||||
# No token that's between this token and this head could be our
|
||||
# child.
|
||||
if (ptr.head >= 1) and (ptr + ptr.head) < self.c:
|
||||
ptr += ptr.head
|
||||
|
||||
elif ptr + ptr.head == self.c:
|
||||
yield Token.cinit(self.vocab, self._string,
|
||||
ptr, ptr - (self.c - self.i), self.array_len,
|
||||
self._seq)
|
||||
ptr += 1
|
||||
else:
|
||||
ptr += 1
|
||||
|
||||
property rights:
|
||||
def __get__(self):
|
||||
"""The rightward immediate children of the word, in the syntactic
|
||||
dependency parse."""
|
||||
cdef const TokenC* ptr = (self.c - self.i) + (self.array_len - 1)
|
||||
tokens = []
|
||||
while ptr > self.c:
|
||||
# If this head is still to the right of us, we can skip to it
|
||||
# No token that's between this token and this head could be our
|
||||
# child.
|
||||
if (ptr.head < 0) and ((ptr + ptr.head) > self.c):
|
||||
ptr += ptr.head
|
||||
elif ptr + ptr.head == self.c:
|
||||
tokens.append(Token.cinit(self.vocab, self._string,
|
||||
ptr, ptr - (self.c - self.i), self.array_len,
|
||||
self._seq))
|
||||
ptr -= 1
|
||||
else:
|
||||
ptr -= 1
|
||||
tokens.reverse()
|
||||
for t in tokens:
|
||||
yield t
|
||||
|
||||
property children:
|
||||
def __get__(self):
|
||||
yield from self.lefts
|
||||
yield from self.rights
|
||||
|
||||
property subtree:
|
||||
def __get__(self):
|
||||
for word in self.lefts:
|
||||
yield from word.subtree
|
||||
yield self
|
||||
for word in self.rights:
|
||||
yield from word.subtree
|
||||
|
||||
property left_edge:
|
||||
def __get__(self):
|
||||
return Token.cinit(self.vocab, self._string,
|
||||
(self.c - self.i) + self.c.l_edge, self.c.l_edge,
|
||||
self.array_len, self._seq)
|
||||
|
||||
property right_edge:
|
||||
def __get__(self):
|
||||
return Token.cinit(self.vocab, self._string,
|
||||
(self.c - self.i) + self.c.r_edge, self.c.r_edge,
|
||||
self.array_len, self._seq)
|
||||
|
||||
property head:
|
||||
def __get__(self):
|
||||
"""The token predicted by the parser to be the head of the current token."""
|
||||
return Token.cinit(self.vocab, self._string,
|
||||
self.c + self.c.head, self.i + self.c.head, self.array_len,
|
||||
self._seq)
|
||||
|
||||
property conjuncts:
|
||||
def __get__(self):
|
||||
"""Get a list of conjoined words"""
|
||||
cdef Token word
|
||||
conjs = []
|
||||
if self.c.pos != CONJ and self.c.pos != PUNCT:
|
||||
seen_conj = False
|
||||
for word in reversed(list(self.lefts)):
|
||||
if word.c.pos == CONJ:
|
||||
seen_conj = True
|
||||
elif seen_conj and word.c.pos == self.c.pos:
|
||||
conjs.append(word)
|
||||
conjs.reverse()
|
||||
conjs.append(self)
|
||||
if seen_conj:
|
||||
return conjs
|
||||
elif self is not self.head and self in self.head.conjuncts:
|
||||
return self.head.conjuncts
|
||||
else:
|
||||
return []
|
||||
|
||||
property ent_type:
|
||||
def __get__(self):
|
||||
return self.c.ent_type
|
||||
|
||||
property ent_iob:
|
||||
def __get__(self):
|
||||
return self.c.ent_iob
|
||||
|
||||
property ent_type_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.ent_type]
|
||||
|
||||
property ent_iob_:
|
||||
def __get__(self):
|
||||
iob_strings = ('', 'I', 'O', 'B')
|
||||
return iob_strings[self.c.ent_iob]
|
||||
|
||||
property whitespace_:
|
||||
def __get__(self):
|
||||
return self.string[self.c.lex.length:]
|
||||
|
||||
property orth_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.orth]
|
||||
|
||||
property lower_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.lower]
|
||||
|
||||
property norm_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.norm]
|
||||
|
||||
property shape_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.shape]
|
||||
|
||||
property prefix_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.prefix]
|
||||
|
||||
property suffix_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lex.suffix]
|
||||
|
||||
property lemma_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.lemma]
|
||||
|
||||
property pos_:
|
||||
def __get__(self):
|
||||
return _pos_id_to_string[self.c.pos]
|
||||
|
||||
property tag_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.tag]
|
||||
|
||||
property dep_:
|
||||
def __get__(self):
|
||||
return self.vocab.strings[self.c.dep]
|
||||
|
||||
|
||||
_pos_id_to_string = {id_: string for string, id_ in UNIV_POS_NAMES.items()}
|
||||
|
||||
_parse_unset_error = """Text has not been parsed, so cannot be accessed.
|
||||
|
||||
Check that the parser data is installed. Run "python -m spacy.en.download" if not.
|
||||
Check whether parse=False in the call to English.__call__
|
||||
"""
|
Loading…
Reference in New Issue
Block a user