mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 16:24:16 +03:00
Avoid use of numpy.tensordot
This commit is contained in:
parent
642eb28c16
commit
c9987cf131
35
spacy/_ml.py
35
spacy/_ml.py
|
@ -127,24 +127,34 @@ class PrecomputableAffine(Model):
|
|||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
tensordot = self.ops.xp.tensordot
|
||||
ascontiguous = self.ops.xp.ascontiguousarray
|
||||
|
||||
Yf = tensordot(X, self.W, axes=[[1], [3]])
|
||||
Yf = self.ops.dot(X,
|
||||
self.W.reshape((self.nF*self.nO*self.nP, self.nI)).T)
|
||||
|
||||
Yf = Yf.reshape((X.shape[0], self.nF, self.nO, self.nP))
|
||||
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
|
||||
|
||||
dXf = tensordot(dY, self.W, axes=[[1,2], [1,2]])
|
||||
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
self.d_W += dW.transpose((2, 0, 1, 3))
|
||||
self.d_b += dY.sum(axis=0)
|
||||
dY = dY.reshape((dY.shape[0], self.nO*self.nP))
|
||||
|
||||
Wopfi = self.W.transpose((1, 2, 0, 3))
|
||||
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
|
||||
Wopfi = Wopfi.reshape((self.nO*self.nP, self.nF * self.nI))
|
||||
dXf = self.ops.dot(dY.reshape((dY.shape[0], self.nO*self.nP)), Wopfi)
|
||||
|
||||
# Reuse the buffer
|
||||
dWopfi = Wopfi; dWopfi.fill(0.)
|
||||
self.ops.xp.dot(dY.T, Xf, out=dWopfi)
|
||||
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
self.d_W += dWopfi.transpose((2, 0, 1, 3))
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
|
||||
return Yf, backward
|
||||
|
||||
@staticmethod
|
||||
|
@ -168,9 +178,9 @@ class PrecomputableAffine(Model):
|
|||
size=tokvecs.size).reshape(tokvecs.shape)
|
||||
|
||||
def predict(ids, tokvecs):
|
||||
hiddens = model(tokvecs)
|
||||
hiddens = model(tokvecs) # (b, f, o, p)
|
||||
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
|
||||
model.ops.scatter_add(vector, ids, hiddens)
|
||||
model.ops.xp.add.at(vector, ids, hiddens)
|
||||
vector += model.b
|
||||
if model.nP >= 2:
|
||||
return model.ops.maxout(vector)[0]
|
||||
|
@ -318,8 +328,7 @@ def Tok2Vec(width, embed_size, **kwargs):
|
|||
|
||||
tok2vec = (
|
||||
FeatureExtracter(cols)
|
||||
>> with_flatten(
|
||||
embed >> (convolution ** 4), pad=4)
|
||||
>> with_flatten(embed >> (convolution ** 4), pad=4)
|
||||
)
|
||||
|
||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||
|
|
Loading…
Reference in New Issue
Block a user