mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Fix spancat for empty docs and zero suggestions (#9654)
* Fix spancat for empty docs and zero suggestions * Use ops.xp.zeros in test
This commit is contained in:
parent
67d8c8a081
commit
c9baf9d196
|
@ -28,7 +28,13 @@ def forward(
|
||||||
X, spans = source_spans
|
X, spans = source_spans
|
||||||
assert spans.dataXd.ndim == 2
|
assert spans.dataXd.ndim == 2
|
||||||
indices = _get_span_indices(ops, spans, X.lengths)
|
indices = _get_span_indices(ops, spans, X.lengths)
|
||||||
|
if len(indices) > 0:
|
||||||
Y = Ragged(X.dataXd[indices], spans.dataXd[:, 1] - spans.dataXd[:, 0]) # type: ignore[arg-type, index]
|
Y = Ragged(X.dataXd[indices], spans.dataXd[:, 1] - spans.dataXd[:, 0]) # type: ignore[arg-type, index]
|
||||||
|
else:
|
||||||
|
Y = Ragged(
|
||||||
|
ops.xp.zeros(X.dataXd.shape, dtype=X.dataXd.dtype),
|
||||||
|
ops.xp.zeros((len(X.lengths),), dtype="i"),
|
||||||
|
)
|
||||||
x_shape = X.dataXd.shape
|
x_shape = X.dataXd.shape
|
||||||
x_lengths = X.lengths
|
x_lengths = X.lengths
|
||||||
|
|
||||||
|
@ -53,7 +59,7 @@ def _get_span_indices(ops, spans: Ragged, lengths: Ints1d) -> Ints1d:
|
||||||
for j in range(spans_i.shape[0]):
|
for j in range(spans_i.shape[0]):
|
||||||
indices.append(ops.xp.arange(spans_i[j, 0], spans_i[j, 1])) # type: ignore[call-overload, index]
|
indices.append(ops.xp.arange(spans_i[j, 0], spans_i[j, 1])) # type: ignore[call-overload, index]
|
||||||
offset += length
|
offset += length
|
||||||
return ops.flatten(indices)
|
return ops.flatten(indices, dtype="i", ndim_if_empty=1)
|
||||||
|
|
||||||
|
|
||||||
def _ensure_cpu(spans: Ragged, lengths: Ints1d) -> Tuple[Ragged, Ints1d]:
|
def _ensure_cpu(spans: Ragged, lengths: Ints1d) -> Tuple[Ragged, Ints1d]:
|
||||||
|
|
|
@ -78,7 +78,7 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
|
||||||
if len(spans) > 0:
|
if len(spans) > 0:
|
||||||
output = Ragged(ops.xp.vstack(spans), lengths_array)
|
output = Ragged(ops.xp.vstack(spans), lengths_array)
|
||||||
else:
|
else:
|
||||||
output = Ragged(ops.xp.zeros((0, 0)), lengths_array)
|
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
|
||||||
|
|
||||||
assert output.dataXd.ndim == 2
|
assert output.dataXd.ndim == 2
|
||||||
return output
|
return output
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
import pytest
|
import pytest
|
||||||
import numpy
|
import numpy
|
||||||
from numpy.testing import assert_array_equal, assert_almost_equal
|
from numpy.testing import assert_array_equal, assert_almost_equal
|
||||||
from thinc.api import get_current_ops
|
from thinc.api import get_current_ops, Ragged
|
||||||
|
|
||||||
from spacy import util
|
from spacy import util
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
|
@ -29,6 +29,7 @@ TRAIN_DATA_OVERLAPPING = [
|
||||||
"I like London and Berlin",
|
"I like London and Berlin",
|
||||||
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
|
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
|
||||||
),
|
),
|
||||||
|
("", {"spans": {SPAN_KEY: []}}),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -365,3 +366,31 @@ def test_overfitting_IO_overlapping():
|
||||||
"London and Berlin",
|
"London and Berlin",
|
||||||
}
|
}
|
||||||
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
|
||||||
|
|
||||||
|
|
||||||
|
def test_zero_suggestions():
|
||||||
|
# Test with a suggester that returns 0 suggestions
|
||||||
|
|
||||||
|
@registry.misc("test_zero_suggester")
|
||||||
|
def make_zero_suggester():
|
||||||
|
def zero_suggester(docs, *, ops=None):
|
||||||
|
if ops is None:
|
||||||
|
ops = get_current_ops()
|
||||||
|
return Ragged(
|
||||||
|
ops.xp.zeros((0, 0), dtype="i"), ops.xp.zeros((len(docs),), dtype="i")
|
||||||
|
)
|
||||||
|
|
||||||
|
return zero_suggester
|
||||||
|
|
||||||
|
fix_random_seed(0)
|
||||||
|
nlp = English()
|
||||||
|
spancat = nlp.add_pipe(
|
||||||
|
"spancat",
|
||||||
|
config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY},
|
||||||
|
)
|
||||||
|
train_examples = make_examples(nlp)
|
||||||
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
||||||
|
assert spancat.model.get_dim("nO") == 2
|
||||||
|
assert set(spancat.labels) == {"LOC", "PERSON"}
|
||||||
|
|
||||||
|
nlp.update(train_examples, sgd=optimizer)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user