mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Document current JSON format for training
This commit is contained in:
parent
2b8e7c45e0
commit
c9dc88ddfc
46
website/api/_annotation/_training.jade
Normal file
46
website/api/_annotation/_training.jade
Normal file
|
@ -0,0 +1,46 @@
|
|||
//- 💫 DOCS > API > ANNOTATION > TRAINING
|
||||
|
||||
p
|
||||
| spaCy takes training data in JSON format. The built-in
|
||||
| #[+api("cli#convert") #[code convert]] command helps you convert the
|
||||
| #[code .conllu] format used by the
|
||||
| #[+a("https://github.com/UniversalDependencies") Universal Dependencies corpora]
|
||||
| to spaCy's training format.
|
||||
|
||||
+aside("Annotating entities")
|
||||
| Named entities are provided in the #[+a("/api/annotation#biluo") BILUO]
|
||||
| notation. Tokens outside an entity are set to #[code "O"] and tokens
|
||||
| that are part of an entity are set to the entity label, prefixed by the
|
||||
| BILUO marker. For example #[code "B-ORG"] describes the first token of
|
||||
| a multi-token #[code ORG] entity and #[code "U-PERSON"] a single
|
||||
| token representing a #[code PERSON] entity
|
||||
|
||||
+code("Example structure").
|
||||
[{
|
||||
"id": int, # ID of the document within the corpus
|
||||
"paragraphs": [{ # list of paragraphs in the corpus
|
||||
"raw": string, # raw text of the paragraph
|
||||
"sentences": [{ # list of sentences in the paragraph
|
||||
"tokens": [{ # list of tokens in the sentence
|
||||
"id": int, # index of the token in the document
|
||||
"dep": string, # dependency label
|
||||
"head": int, # offset of token head relative to token index
|
||||
"tag": string, # part-of-speech tag
|
||||
"orth": string, # verbatim text of the token
|
||||
"ner": string # BILUO label, e.g. "O" or "B-ORG"
|
||||
}],
|
||||
"brackets": [{ # phrase structure (NOT USED by current models)
|
||||
"first": int, # index of first token
|
||||
"last": int, # index of last token
|
||||
"label": string # phrase label
|
||||
}]
|
||||
}]
|
||||
}]
|
||||
}]
|
||||
|
||||
p
|
||||
| Here's an example of dependencies, part-of-speech tags and names
|
||||
| entities, taken from the English Wall Street Journal portion of the Penn
|
||||
| Treebank:
|
||||
|
||||
+github("spacy", "examples/training/training-data.json", false, false, "json")
|
|
@ -101,31 +101,4 @@ p This document describes the target annotations spaCy is trained to predict.
|
|||
+section("training")
|
||||
+h(2, "json-input") JSON input format for training
|
||||
|
||||
+under-construction
|
||||
|
||||
p spaCy takes training data in the following format:
|
||||
|
||||
+code("Example structure").
|
||||
doc: {
|
||||
id: string,
|
||||
paragraphs: [{
|
||||
raw: string,
|
||||
sents: [int],
|
||||
tokens: [{
|
||||
start: int,
|
||||
tag: string,
|
||||
head: int,
|
||||
dep: string
|
||||
}],
|
||||
ner: [{
|
||||
start: int,
|
||||
end: int,
|
||||
label: string
|
||||
}],
|
||||
brackets: [{
|
||||
start: int,
|
||||
end: int,
|
||||
label: string
|
||||
}]
|
||||
}]
|
||||
}
|
||||
include _annotation/_training
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
//- 💫 DOCS > USAGE > TRAINING > TAGGER & PARSER
|
||||
|
||||
+under-construction
|
||||
|
||||
+h(3, "training-json") JSON format for training
|
||||
|
||||
include ../../api/_annotation/_training
|
||||
|
|
Loading…
Reference in New Issue
Block a user