mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Fix GPU training and evaluation
This commit is contained in:
parent
a438cef8c5
commit
ca70b08661
|
@ -65,7 +65,7 @@ def train_config(config):
|
|||
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
||||
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
|
||||
|
||||
nlp = Language(pipeline=['token_vectors', 'tags']) #, 'dependencies'])
|
||||
nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies'])
|
||||
dropout = util.env_opt('dropout', 0.0)
|
||||
# TODO: Get spaCy using Thinc's trainer and optimizer
|
||||
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
|
||||
|
@ -75,7 +75,7 @@ def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
|||
for i, (docs, golds) in enumerate(epoch):
|
||||
state = nlp.update(docs, golds, drop=dropout, sgd=optimizer)
|
||||
losses['dep_loss'] += state.get('parser_loss', 0.0)
|
||||
losses['tag_loss'] += state.get('tagger_loss', 0.0)
|
||||
losses['tag_loss'] += state.get('tag_loss', 0.0)
|
||||
to_render.insert(0, nlp(docs[-1].text))
|
||||
to_render[0].user_data['title'] = "Batch %d" % i
|
||||
with Path('/tmp/entities.html').open('w') as file_:
|
||||
|
@ -98,30 +98,35 @@ def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
|||
def evaluate(Language, gold_tuples, path):
|
||||
with (path / 'model.bin').open('rb') as file_:
|
||||
nlp = dill.load(file_)
|
||||
# TODO:
|
||||
# 1. This code is duplicate with spacy.train.Trainer.evaluate
|
||||
# 2. There's currently a semantic difference between pipe and
|
||||
# not pipe! It matters whether we batch the inputs. Must fix!
|
||||
all_docs = []
|
||||
all_golds = []
|
||||
for raw_text, paragraph_tuples in dev_sents:
|
||||
if gold_preproc:
|
||||
raw_text = None
|
||||
else:
|
||||
paragraph_tuples = merge_sents(paragraph_tuples)
|
||||
docs = self.make_docs(raw_text, paragraph_tuples)
|
||||
golds = self.make_golds(docs, paragraph_tuples)
|
||||
all_docs.extend(docs)
|
||||
all_golds.extend(golds)
|
||||
scorer = Scorer()
|
||||
for raw_text, sents in gold_tuples:
|
||||
sents = merge_sents(sents)
|
||||
for annot_tuples, brackets in sents:
|
||||
if raw_text is None:
|
||||
tokens = Doc(nlp.vocab, words=annot_tuples[1])
|
||||
state = None
|
||||
for proc in nlp.pipeline:
|
||||
state = proc(tokens, state=state)
|
||||
else:
|
||||
tokens = nlp(raw_text)
|
||||
gold = GoldParse.from_annot_tuples(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold)
|
||||
for doc, gold in zip(self.nlp.pipe(all_docs), all_golds):
|
||||
scorer.score(doc, gold)
|
||||
return scorer
|
||||
|
||||
|
||||
def print_progress(itn, losses, dev_scores):
|
||||
# TODO: Fix!
|
||||
scores = {}
|
||||
for col in ['dep_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
|
||||
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
|
||||
scores[col] = 0.0
|
||||
scores.update(losses)
|
||||
scores.update(dev_scores)
|
||||
tpl = '{:d}\t{dep_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
|
||||
tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
|
||||
print(tpl.format(itn, **scores))
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user