mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Fix GPU training and evaluation
This commit is contained in:
parent
a438cef8c5
commit
ca70b08661
|
@ -65,7 +65,7 @@ def train_config(config):
|
||||||
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
||||||
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
|
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
|
||||||
|
|
||||||
nlp = Language(pipeline=['token_vectors', 'tags']) #, 'dependencies'])
|
nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies'])
|
||||||
dropout = util.env_opt('dropout', 0.0)
|
dropout = util.env_opt('dropout', 0.0)
|
||||||
# TODO: Get spaCy using Thinc's trainer and optimizer
|
# TODO: Get spaCy using Thinc's trainer and optimizer
|
||||||
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
|
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
|
||||||
|
@ -75,7 +75,7 @@ def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
||||||
for i, (docs, golds) in enumerate(epoch):
|
for i, (docs, golds) in enumerate(epoch):
|
||||||
state = nlp.update(docs, golds, drop=dropout, sgd=optimizer)
|
state = nlp.update(docs, golds, drop=dropout, sgd=optimizer)
|
||||||
losses['dep_loss'] += state.get('parser_loss', 0.0)
|
losses['dep_loss'] += state.get('parser_loss', 0.0)
|
||||||
losses['tag_loss'] += state.get('tagger_loss', 0.0)
|
losses['tag_loss'] += state.get('tag_loss', 0.0)
|
||||||
to_render.insert(0, nlp(docs[-1].text))
|
to_render.insert(0, nlp(docs[-1].text))
|
||||||
to_render[0].user_data['title'] = "Batch %d" % i
|
to_render[0].user_data['title'] = "Batch %d" % i
|
||||||
with Path('/tmp/entities.html').open('w') as file_:
|
with Path('/tmp/entities.html').open('w') as file_:
|
||||||
|
@ -98,30 +98,35 @@ def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
||||||
def evaluate(Language, gold_tuples, path):
|
def evaluate(Language, gold_tuples, path):
|
||||||
with (path / 'model.bin').open('rb') as file_:
|
with (path / 'model.bin').open('rb') as file_:
|
||||||
nlp = dill.load(file_)
|
nlp = dill.load(file_)
|
||||||
|
# TODO:
|
||||||
|
# 1. This code is duplicate with spacy.train.Trainer.evaluate
|
||||||
|
# 2. There's currently a semantic difference between pipe and
|
||||||
|
# not pipe! It matters whether we batch the inputs. Must fix!
|
||||||
|
all_docs = []
|
||||||
|
all_golds = []
|
||||||
|
for raw_text, paragraph_tuples in dev_sents:
|
||||||
|
if gold_preproc:
|
||||||
|
raw_text = None
|
||||||
|
else:
|
||||||
|
paragraph_tuples = merge_sents(paragraph_tuples)
|
||||||
|
docs = self.make_docs(raw_text, paragraph_tuples)
|
||||||
|
golds = self.make_golds(docs, paragraph_tuples)
|
||||||
|
all_docs.extend(docs)
|
||||||
|
all_golds.extend(golds)
|
||||||
scorer = Scorer()
|
scorer = Scorer()
|
||||||
for raw_text, sents in gold_tuples:
|
for doc, gold in zip(self.nlp.pipe(all_docs), all_golds):
|
||||||
sents = merge_sents(sents)
|
scorer.score(doc, gold)
|
||||||
for annot_tuples, brackets in sents:
|
|
||||||
if raw_text is None:
|
|
||||||
tokens = Doc(nlp.vocab, words=annot_tuples[1])
|
|
||||||
state = None
|
|
||||||
for proc in nlp.pipeline:
|
|
||||||
state = proc(tokens, state=state)
|
|
||||||
else:
|
|
||||||
tokens = nlp(raw_text)
|
|
||||||
gold = GoldParse.from_annot_tuples(tokens, annot_tuples)
|
|
||||||
scorer.score(tokens, gold)
|
|
||||||
return scorer
|
return scorer
|
||||||
|
|
||||||
|
|
||||||
def print_progress(itn, losses, dev_scores):
|
def print_progress(itn, losses, dev_scores):
|
||||||
# TODO: Fix!
|
# TODO: Fix!
|
||||||
scores = {}
|
scores = {}
|
||||||
for col in ['dep_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
|
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
|
||||||
scores[col] = 0.0
|
scores[col] = 0.0
|
||||||
scores.update(losses)
|
scores.update(losses)
|
||||||
scores.update(dev_scores)
|
scores.update(dev_scores)
|
||||||
tpl = '{:d}\t{dep_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
|
tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
|
||||||
print(tpl.format(itn, **scores))
|
print(tpl.format(itn, **scores))
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user