diff --git a/examples/training/train_ner_standalone.py b/examples/training/train_ner_standalone.py index e4fb1d1e8..0c5094bb7 100644 --- a/examples/training/train_ner_standalone.py +++ b/examples/training/train_ner_standalone.py @@ -6,7 +6,7 @@ To achieve that, it duplicates some of spaCy's internal functionality. Specifically, in this example, we don't use spaCy's built-in Language class to wire together the Vocab, Tokenizer and EntityRecognizer. Instead, we write -our own simle Pipeline class, so that it's easier to see how the pieces +our own simple Pipeline class, so that it's easier to see how the pieces interact. Input data: @@ -142,16 +142,15 @@ def train(nlp, train_examples, dev_examples, nr_epoch=5): inputs, annots = zip(*batch) nlp.update(list(inputs), list(annots), sgd, losses=losses) scores = nlp.evaluate(dev_examples) - report_scores(i, losses['ner'], scores) - scores = nlp.evaluate(dev_examples) - report_scores(channels, i+1, loss, scores) + report_scores(i+1, losses['ner'], scores) def report_scores(i, loss, scores): precision = '%.2f' % scores['ents_p'] recall = '%.2f' % scores['ents_r'] f_measure = '%.2f' % scores['ents_f'] - print('%d %s %s %s' % (int(loss), precision, recall, f_measure)) + print('Epoch %d: %d %s %s %s' % ( + i, int(loss), precision, recall, f_measure)) def read_examples(path):