mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
Merge pull request #6252 from svlandeg/fix/docs
This commit is contained in:
commit
cb47f25cda
|
@ -195,7 +195,7 @@ class Tagger(TrainablePipe):
|
||||||
validate_examples(examples, "Tagger.update")
|
validate_examples(examples, "Tagger.update")
|
||||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||||
# Handle cases where there are no tokens in any docs.
|
# Handle cases where there are no tokens in any docs.
|
||||||
return
|
return losses
|
||||||
set_dropout_rate(self.model, drop)
|
set_dropout_rate(self.model, drop)
|
||||||
tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
|
tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
|
||||||
for sc in tag_scores:
|
for sc in tag_scores:
|
||||||
|
@ -227,22 +227,24 @@ class Tagger(TrainablePipe):
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tagger#rehearse
|
DOCS: https://nightly.spacy.io/api/tagger#rehearse
|
||||||
"""
|
"""
|
||||||
|
if losses is None:
|
||||||
|
losses = {}
|
||||||
|
losses.setdefault(self.name, 0.0)
|
||||||
validate_examples(examples, "Tagger.rehearse")
|
validate_examples(examples, "Tagger.rehearse")
|
||||||
docs = [eg.predicted for eg in examples]
|
docs = [eg.predicted for eg in examples]
|
||||||
if self._rehearsal_model is None:
|
if self._rehearsal_model is None:
|
||||||
return
|
return losses
|
||||||
if not any(len(doc) for doc in docs):
|
if not any(len(doc) for doc in docs):
|
||||||
# Handle cases where there are no tokens in any docs.
|
# Handle cases where there are no tokens in any docs.
|
||||||
return
|
return losses
|
||||||
set_dropout_rate(self.model, drop)
|
set_dropout_rate(self.model, drop)
|
||||||
guesses, backprop = self.model.begin_update(docs)
|
guesses, backprop = self.model.begin_update(docs)
|
||||||
target = self._rehearsal_model(examples)
|
target = self._rehearsal_model(examples)
|
||||||
gradient = guesses - target
|
gradient = guesses - target
|
||||||
backprop(gradient)
|
backprop(gradient)
|
||||||
self.finish_update(sgd)
|
self.finish_update(sgd)
|
||||||
if losses is not None:
|
losses[self.name] += (gradient**2).sum()
|
||||||
losses.setdefault(self.name, 0.0)
|
return losses
|
||||||
losses[self.name] += (gradient**2).sum()
|
|
||||||
|
|
||||||
def get_loss(self, examples, scores):
|
def get_loss(self, examples, scores):
|
||||||
"""Find the loss and gradient of loss for the batch of documents and
|
"""Find the loss and gradient of loss for the batch of documents and
|
||||||
|
|
|
@ -116,7 +116,7 @@ cdef class TrainablePipe(Pipe):
|
||||||
validate_examples(examples, "TrainablePipe.update")
|
validate_examples(examples, "TrainablePipe.update")
|
||||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||||
# Handle cases where there are no tokens in any docs.
|
# Handle cases where there are no tokens in any docs.
|
||||||
return
|
return losses
|
||||||
set_dropout_rate(self.model, drop)
|
set_dropout_rate(self.model, drop)
|
||||||
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
|
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
|
||||||
loss, d_scores = self.get_loss(examples, scores)
|
loss, d_scores = self.get_loss(examples, scores)
|
||||||
|
|
|
@ -503,7 +503,7 @@ overview of the `TrainablePipe` methods used by
|
||||||
|
|
||||||
</Infobox>
|
</Infobox>
|
||||||
|
|
||||||
### Example: Entity elation extraction component {#component-rel}
|
### Example: Entity relation extraction component {#component-rel}
|
||||||
|
|
||||||
This section outlines an example use-case of implementing a **novel relation
|
This section outlines an example use-case of implementing a **novel relation
|
||||||
extraction component** from scratch. We'll implement a binary relation
|
extraction component** from scratch. We'll implement a binary relation
|
||||||
|
@ -618,7 +618,7 @@ we can define our relation model in a config file as such:
|
||||||
# ...
|
# ...
|
||||||
|
|
||||||
[model.get_candidates]
|
[model.get_candidates]
|
||||||
@misc = "rel_cand_generator.v2"
|
@misc = "rel_cand_generator.v1"
|
||||||
max_length = 20
|
max_length = 20
|
||||||
|
|
||||||
[model.create_candidate_tensor]
|
[model.create_candidate_tensor]
|
||||||
|
@ -687,8 +687,8 @@ Before the model can be used, it needs to be
|
||||||
[initialized](/usage/training#initialization). This function receives a callback
|
[initialized](/usage/training#initialization). This function receives a callback
|
||||||
to access the full **training data set**, or a representative sample. This data
|
to access the full **training data set**, or a representative sample. This data
|
||||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
||||||
labels can be provided to `initialize`, or you can call the
|
labels can be provided to `initialize`, or you can call
|
||||||
`RelationExtractoradd_label` directly. The number of labels defines the output
|
`RelationExtractor.add_label` directly. The number of labels defines the output
|
||||||
dimensionality of the network, and will be used to do
|
dimensionality of the network, and will be used to do
|
||||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
||||||
layers of the neural network. This is triggered by calling
|
layers of the neural network. This is triggered by calling
|
||||||
|
@ -729,7 +729,7 @@ and its internal model can be trained and used to make predictions.
|
||||||
During training, the function [`update`](/api/pipe#update) is invoked which
|
During training, the function [`update`](/api/pipe#update) is invoked which
|
||||||
delegates to
|
delegates to
|
||||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
||||||
[`get_loss`](/api/pipe#get_loss) function that **calculate the loss** for a
|
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
|
||||||
batch of examples, as well as the **gradient** of loss that will be used to
|
batch of examples, as well as the **gradient** of loss that will be used to
|
||||||
update the weights of the model layers. Thinc provides several
|
update the weights of the model layers. Thinc provides several
|
||||||
[loss functions](https://thinc.ai/docs/api-loss) that can be used for the
|
[loss functions](https://thinc.ai/docs/api-loss) that can be used for the
|
||||||
|
|
Loading…
Reference in New Issue
Block a user