mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
* Update quickstart, with work on api-at-a-glance
This commit is contained in:
parent
76cd024095
commit
cb6a526fcd
|
@ -5,6 +5,8 @@ Quick Start
|
||||||
Install
|
Install
|
||||||
-------
|
-------
|
||||||
|
|
||||||
|
.. py:currentmodule:: spacy
|
||||||
|
|
||||||
.. code:: bash
|
.. code:: bash
|
||||||
|
|
||||||
$ pip install spacy
|
$ pip install spacy
|
||||||
|
@ -17,159 +19,180 @@ the spacy.en package directory.
|
||||||
Usage
|
Usage
|
||||||
-----
|
-----
|
||||||
|
|
||||||
The main entry-point is :py:meth:`spacy.en.English.__call__`, which accepts a unicode string as an argument, and returns a :py:class:`spacy.tokens.Tokens` object:
|
The main entry-point is :meth:`en.English.__call__`, which accepts a unicode string
|
||||||
|
as an argument, and returns a :py:class:`tokens.Tokens` object. You can
|
||||||
|
iterate over it to get :py:class:`tokens.Token` objects, which provide
|
||||||
|
a convenient API:
|
||||||
|
|
||||||
>>> from spacy.en import English
|
>>> from spacy.en import English
|
||||||
>>> nlp = English()
|
>>> nlp = English()
|
||||||
>>> tokens = nlp(u'A fine, very fine, example sentence', tag=True,
|
>>> tokens = nlp(u'I ate the pizza with anchovies.')
|
||||||
parse=True)
|
>>> pizza = tokens[3]
|
||||||
|
>>> (pizza.orth, pizza.orth_, pizza.head.lemma, pizza.head.lemma_)
|
||||||
|
... (14702, u'pizza', 14702, u'ate')
|
||||||
|
|
||||||
Calls to :py:meth:`English.__call__` has a side-effect: when a new
|
spaCy maps all strings to sequential integer IDs --- a common idiom in NLP.
|
||||||
word is seen, it is added to the string-to-ID mapping table in
|
If an attribute `Token.foo` is an integer ID, then `Token.foo_` is the string,
|
||||||
:py:class:`English.vocab.strings`. Because of this, you will usually only want
|
e.g. `pizza.orth_` and `pizza.orth` provide the integer ID and the string of
|
||||||
to create one instance of the pipeline. If you create two instances, and use
|
the original orthographic form of the word, with no string normalizations
|
||||||
them to process different text, you'll probably get different string-to-ID
|
applied.
|
||||||
mappings. You might choose to wrap the English class as a singleton to ensure
|
|
||||||
only one instance is created, but I've left that up to you. I prefer to pass
|
|
||||||
the instance around as an explicit argument.
|
|
||||||
|
|
||||||
You shouldn't need to batch up your text or prepare it in any way.
|
.. note::
|
||||||
Processing times are linear in the length of the string, with minimal per-call
|
|
||||||
overhead (apart from the first call, when the tagger and parser models are
|
en.English.__call__ is stateful --- it has an important **side-effect**:
|
||||||
lazy-loaded. This takes a few seconds on my machine.).
|
spaCy maps strings to sequential integers, so when it processes a new
|
||||||
|
word, the mapping table is updated.
|
||||||
|
|
||||||
:py:meth:`English.__class__` returns a :py:class:`Tokens` object, through which
|
Future releases will feature a way to reconcile :py:class:`strings.StringStore`
|
||||||
you'll access the processed text. You can access the text in three ways:
|
mappings, but for now, you should only work with one instance of the pipeline
|
||||||
|
at a time.
|
||||||
|
|
||||||
Iteration
|
This issue only affects rare words. spaCy's pre-compiled lexicon has 260,000
|
||||||
:py:meth:`Tokens.__iter__` and :py:meth:`Tokens.__getitem__`
|
words; the string IDs for these words will always be consistent.
|
||||||
|
|
||||||
- Most "Pythonic"
|
|
||||||
|
|
||||||
- `spacy.tokens.Token` object, attribute access
|
|
||||||
|
|
||||||
- Inefficient: New Token object created each time.
|
|
||||||
|
|
||||||
Export
|
|
||||||
:py:meth:`Tokens.count_by` and :py:meth:`Tokens.to_array`
|
|
||||||
|
|
||||||
- `count_by`: Efficient dictionary of counts, for bag-of-words model.
|
|
||||||
|
|
||||||
- `to_array`: Export to numpy array. One row per word, one column per
|
|
||||||
attribute.
|
|
||||||
|
|
||||||
- Specify attributes with constants from `spacy.en.attrs`.
|
|
||||||
|
|
||||||
Cython
|
|
||||||
:py:attr:`TokenC* Tokens.data`
|
|
||||||
|
|
||||||
- Raw data is stored in contiguous array of structs
|
|
||||||
|
|
||||||
- Good syntax, C speed
|
|
||||||
|
|
||||||
- Documentation coming soon. In the meantime, see spacy/syntax/_parser.features.pyx
|
|
||||||
or spacy/en/pos.pyx
|
|
||||||
|
|
||||||
|
|
||||||
(Most of the) API at a glance
|
(Most of the) API at a glance
|
||||||
-----------------------------
|
-----------------------------
|
||||||
|
|
||||||
.. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
|
**Process the string:**
|
||||||
|
|
||||||
.. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens
|
.. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
|
||||||
|
|
||||||
.. py:method:: vocab.__getitem__(self, text: unicode) --> Lexeme
|
.. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens
|
||||||
|
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
| Attribute | Type | Its API |
|
||||||
|
+=================+==============+==============+
|
||||||
|
| vocab | Vocab | __getitem__ |
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
| vocab.strings | StingStore | __getitem__ |
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
| tokenizer | Tokenizer | __call__ |
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
| tagger | EnPosTagger | __call__ |
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
| parser | GreedyParser | __call__ |
|
||||||
|
+-----------------+--------------+--------------+
|
||||||
|
|
||||||
|
**Get dict or numpy array:**
|
||||||
|
|
||||||
|
.. py:method:: tokens.Tokens.to_array(self, attr_ids: List[int]) --> numpy.ndarray[ndim=2, dtype=int32]
|
||||||
|
|
||||||
|
.. py:method:: tokens.Tokens.count_by(self, attr_id: int) --> Dict[int, int]
|
||||||
|
|
||||||
|
**Get Token objects**
|
||||||
|
|
||||||
|
.. py:method:: tokens.Tokens.__getitem__(self, i) --> Token
|
||||||
|
|
||||||
|
.. py:method:: tokens.Tokens.__iter__(self) --> Iterator[Token]
|
||||||
|
|
||||||
|
**Embedded word representenations**
|
||||||
|
|
||||||
|
.. py:attribute:: tokens.Token.repvec
|
||||||
|
|
||||||
.. py:method:: vocab.__getitem__(self, text: unicode) --> Lexeme
|
.. py:attribute:: lexeme.Lexeme.repvec
|
||||||
|
|
||||||
.. py:class:: spacy.tokens.Tokens via English.__call__
|
|
||||||
|
|
||||||
.. py:method:: __getitem__(self, i) --> Token
|
**Navigate dependency parse**
|
||||||
|
|
||||||
.. py:method:: __iter__(self) --> Iterator[Token]
|
|
||||||
|
|
||||||
.. py:method:: to_array(self, attr_ids: List[int]) --> numpy.ndarray[ndim=2, dtype=int32]
|
|
||||||
|
|
||||||
.. py:method:: count_by(self, attr_id: int) --> Dict[int, int]
|
|
||||||
|
|
||||||
.. py:class:: spacy.tokens.Token via Tokens.__iter__, Tokens.__getitem__
|
|
||||||
|
|
||||||
.. py:method:: __unicode__(self) --> unicode
|
|
||||||
|
|
||||||
.. py:method:: __len__(self) --> int
|
|
||||||
|
|
||||||
.. py:method:: nbor(self, i=1) --> Token
|
.. py:method:: nbor(self, i=1) --> Token
|
||||||
|
|
||||||
.. py:method:: child(self, i=1) --> Token
|
.. py:method:: child(self, i=1) --> Token
|
||||||
|
|
||||||
.. py:method:: sibling(self, i=1) --> Token
|
.. py:method:: sibling(self, i=1) --> Token
|
||||||
|
|
||||||
.. py:method:: check_flag(self, attr_id: int) --> bool
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
.. py:attribute:: cluster: int
|
|
||||||
|
|
||||||
.. py:attribute:: string: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: string: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: lemma: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: dep_tag: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: pos: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: fine_pos: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: sic: unicode
|
|
||||||
|
|
||||||
.. py:attribute:: head: Token
|
.. py:attribute:: head: Token
|
||||||
|
|
||||||
|
.. py:attribute:: dep: int
|
||||||
|
|
||||||
|
**Align to original string**
|
||||||
|
|
||||||
|
.. py:attribute:: string: unicode
|
||||||
|
|
||||||
|
Padded with original whitespace.
|
||||||
|
|
||||||
|
.. py:attribute:: length: int
|
||||||
|
|
||||||
|
Length, in unicode code-points. Equal to len(self.orth_).
|
||||||
|
|
||||||
|
self.string[self.length:] gets whitespace.
|
||||||
|
|
||||||
|
.. py:attribute:: idx: int
|
||||||
|
|
||||||
|
Starting offset of word in the original string.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Features
|
Features
|
||||||
--------
|
--------
|
||||||
|
|
||||||
+--------------------------------------------------------------------------+
|
|
||||||
| Boolean Features |
|
**Boolean features**
|
||||||
+----------+---------------------------------------------------------------+
|
|
||||||
| IS_ALPHA | :py:meth:`str.isalpha` |
|
>>> lexeme = nlp.vocab[u'Apple']
|
||||||
+----------+---------------------------------------------------------------+
|
>>> lexeme.is_alpha, is_upper
|
||||||
| IS_DIGIT | :py:meth:`str.isdigit` |
|
True, False
|
||||||
+----------+---------------------------------------------------------------+
|
>>> tokens = nlp(u'Apple computers')
|
||||||
| IS_LOWER | :py:meth:`str.islower` |
|
>>> tokens[0].is_alpha, tokens[0].is_upper
|
||||||
+----------+---------------------------------------------------------------+
|
>>> True, False
|
||||||
| IS_SPACE | :py:meth:`str.isspace` |
|
>>> from spact.en.attrs import IS_ALPHA, IS_UPPER
|
||||||
+----------+---------------------------------------------------------------+
|
>>> tokens.to_array((IS_ALPHA, IS_UPPER))[0]
|
||||||
| IS_TITLE | :py:meth:`str.istitle` |
|
array([1, 0])
|
||||||
+----------+---------------------------------------------------------------+
|
|
||||||
| IS_UPPER | :py:meth:`str.isupper` |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_alpha | :py:meth:`str.isalpha` |
|
||||||
| IS_ASCII | all(ord(c) < 128 for c in string) |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_digit | :py:meth:`str.isdigit` |
|
||||||
| IS_PUNCT | all(unicodedata.category(c).startswith('P') for c in string) |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_lower | :py:meth:`str.islower` |
|
||||||
| LIKE_URL | Using various heuristics, does the string resemble a URL? |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_title | :py:meth:`str.istitle` |
|
||||||
| LIKE_NUM | "Two", "10", "1,000", "10.54", "1/2" etc all match |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_upper | :py:meth:`str.isupper` |
|
||||||
| ID of string features |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_ascii | all(ord(c) < 128 for c in string) |
|
||||||
| SIC | The original string, unmodified. |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| is_punct | all(unicodedata.category(c).startswith('P') for c in string) |
|
||||||
| NORM1 | The string after level 1 normalization: case, spelling |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| like_url | Using various heuristics, does the string resemble a URL? |
|
||||||
| NORM2 | The string after level 2 normalization |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
| like_num | "Two", "10", "1,000", "10.54", "1/2" etc all match |
|
||||||
| SHAPE | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d |
|
+----------+---------------------------------------------------------------+
|
||||||
+----------+---------------------------------------------------------------+
|
|
||||||
| PREFIX | A short slice from the start of the string. |
|
**String-transform Features**
|
||||||
+----------+---------------------------------------------------------------+
|
|
||||||
| SUFFIX | A short slice from the end of the string. |
|
|
||||||
+----------+---------------------------------------------------------------+
|
+----------+---------------------------------------------------------------+
|
||||||
| CLUSTER | Brown cluster ID of the word |
|
| orth | The original string, unmodified. |
|
||||||
+----------+---------------------------------------------------------------+
|
+----------+---------------------------------------------------------------+
|
||||||
| LEMMA | The word's lemma, i.e. morphological suffixes removed |
|
| lower | The original string, forced to lower-case |
|
||||||
+----------+---------------------------------------------------------------+
|
+----------+---------------------------------------------------------------+
|
||||||
| TAG | The word's part-of-speech tag |
|
| norm | The string after additional normalization |
|
||||||
+----------+---------------------------------------------------------------+
|
+----------+---------------------------------------------------------------+
|
||||||
|
| shape | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| prefix | A short slice from the start of the string. |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| suffix | A short slice from the end of the string. |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| lemma | The word's lemma, i.e. morphological suffixes removed |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
|
||||||
|
**Syntactic labels**
|
||||||
|
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| pos | The word's part-of-speech, from the Google Universal Tag Set |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| tag | A fine-grained morphosyntactic tag, e.g. VBZ, NNS, etc |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
| dep | Dependency type label between word and its head, e.g. subj |
|
||||||
|
+----------+---------------------------------------------------------------+
|
||||||
|
|
||||||
|
**Distributional**
|
||||||
|
|
||||||
|
+---------+-----------------------------------------------------------+
|
||||||
|
| cluster | Brown cluster ID of the word |
|
||||||
|
+---------+-----------------------------------------------------------+
|
||||||
|
| prob | Log probability of word, smoothed with Simple Good-Turing |
|
||||||
|
+---------+-----------------------------------------------------------+
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user