* Improving docs

This commit is contained in:
Matthew Honnibal 2014-08-20 21:09:39 +02:00
parent cab7f63fc2
commit cbda38e2d9
4 changed files with 79 additions and 74 deletions

View File

@ -1,5 +1,45 @@
Python API
==========
Cheat Sheet
-----------
.. py:currentmodule:: spacy.en
To and from unicode strings
---------------------------
.. autofunction:: tokenize
.. autofunction:: lookup
.. autofunction:: unhash
Access (Hashed) String Views
----------------------------
.. autofunction:: lex_of
.. autofunction:: norm_of
.. autofunction:: shape_of
.. autofunction:: last3_of
Access String Properties
------------------------
.. autofunction:: length_of
.. autofunction:: first_of
Check Orthographic Flags
-------------------------
.. autofunction:: is_alpha
.. autofunction:: is_digit
.. autofunction:: is_punct
.. autofunction:: is_space
.. autofunction:: is_lower
.. autofunction:: is_upper
.. autofunction:: is_title
.. autofunction:: is_ascii
Access Distributional Information
---------------------------------
.. autofunction:: prob_of
.. autofunction:: cluster_of
.. autofunction:: check_tag_flag
.. autofunction:: check_dist_flag

View File

@ -15,6 +15,7 @@
import sys
import os
import os.path
import sphinx_rtd_theme
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
# If extensions (or modules to document with autodoc) are in another directory,
@ -105,7 +106,8 @@ pygments_style = 'sphinx'
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = 'default'
html_theme = 'sphinx_rtd_theme'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
@ -113,7 +115,7 @@ html_theme = 'default'
#html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
@ -166,7 +168,7 @@ html_static_path = ['_static']
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
html_show_sourcelink = False
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True

View File

@ -0,0 +1,16 @@
Installation
============
Installation via pip::
pip install spacy
Installation From source via `GitHub <https://github.com/honnibal/spaCy>`_, using virtualenv::
$ git clone http://github.com/honnibal/spaCy.git
$ cd spaCy
$ virtualenv .env
$ source .env/bin/activate
$ pip install -r requirements.txt
$ fab make
$ fab test

View File

@ -3,81 +3,28 @@
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
spaCy API Reference
=================================
spaCy Natural Language Tokenizer
================================
.. toctree::
:maxdepth: 2
:maxdepth: 3
guide/overview
guide/install
api/languages/index.rst
api/modules/index.rst
api/python
api/cython
api/extending
Overview
--------
spaCy is a tokenizer for natural languages, tightly coupled to a global
vocabulary store.
Instead of a list of strings, spaCy returns references to lexical types. All
of the string-based features you might need are pre-computed for you:
::
>>> from spacy import en
>>> example = u"Apples aren't oranges..."
>>> apples, are, nt, oranges, ellipses = en.tokenize(example)
>>> en.is_punct(ellipses)
True
>>> en.get_string(en.word_shape(apples))
'Xxxx'
You also get lots of distributional features, calculated from a large
sample of text:
::
>>> en.prob_of(are) > en.prob_of(oranges)
True
>>> en.can_noun(are)
False
>>> en.is_oft_title(apples)
False
Pros and Cons
-------------
Pros:
- All tokens come with indices into the original string
- Full unicode support
- Extensible to other languages
- Batch operations computed efficiently in Cython
- Cython API
- numpy interoperability
Cons:
- It's new (released September 2014)
- Higher memory usage (up to 1gb)
- More conceptually complicated
- Tokenization rules expressed in code, not as data
Installation
Project Home
------------
Installation via pip:
http://honnibal.github.io/spaCy/
pip install spacy
Source (GitHub)
----------------
From source, using virtualenv:
http://github.com/honnibal/spaCy
::
License
-------
$ git clone http://github.com/honnibal/spaCy.git
$ cd spaCy
$ virtualenv .env
$ source .env/bin/activate
$ pip install -r requirements.txt
$ fab make
$ fab test
TODO