Improved training and evaluation (#3538)

* Add early stopping

* Add return_score option to evaluate

* Fix missing str to path conversion

* Fix import + old python compatibility

* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
This commit is contained in:
Krzysztof Kowalczyk 2019-04-15 12:04:36 +02:00 committed by Matthew Honnibal
parent bbf6f9f764
commit cc1516ec26
2 changed files with 36 additions and 1 deletions

View File

@ -17,6 +17,7 @@ from .. import displacy
gpu_id=("Use GPU", "option", "g", int), gpu_id=("Use GPU", "option", "g", int),
displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str), displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
displacy_limit=("Limit of parses to render as HTML", "option", "dl", int), displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
return_scores=("Return dict containing model scores", "flag", "r", bool),
) )
def evaluate( def evaluate(
model, model,
@ -25,6 +26,7 @@ def evaluate(
gold_preproc=False, gold_preproc=False,
displacy_path=None, displacy_path=None,
displacy_limit=25, displacy_limit=25,
return_scores=False,
): ):
""" """
Evaluate a model. To render a sample of parses in a HTML file, set an Evaluate a model. To render a sample of parses in a HTML file, set an
@ -75,6 +77,8 @@ def evaluate(
ents=render_ents, ents=render_ents,
) )
msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path) msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path)
if return_scores:
return scorer.scores
def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True): def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):

View File

@ -35,6 +35,7 @@ from .. import about
pipeline=("Comma-separated names of pipeline components", "option", "p", str), pipeline=("Comma-separated names of pipeline components", "option", "p", str),
vectors=("Model to load vectors from", "option", "v", str), vectors=("Model to load vectors from", "option", "v", str),
n_iter=("Number of iterations", "option", "n", int), n_iter=("Number of iterations", "option", "n", int),
early_stopping_iter=("Maximum number of training epochs without dev accuracy improvement", "option", "e", int),
n_examples=("Number of examples", "option", "ns", int), n_examples=("Number of examples", "option", "ns", int),
use_gpu=("Use GPU", "option", "g", int), use_gpu=("Use GPU", "option", "g", int),
version=("Model version", "option", "V", str), version=("Model version", "option", "V", str),
@ -74,6 +75,7 @@ def train(
pipeline="tagger,parser,ner", pipeline="tagger,parser,ner",
vectors=None, vectors=None,
n_iter=30, n_iter=30,
early_stopping_iter=None,
n_examples=0, n_examples=0,
use_gpu=-1, use_gpu=-1,
version="0.0.0", version="0.0.0",
@ -101,6 +103,7 @@ def train(
train_path = util.ensure_path(train_path) train_path = util.ensure_path(train_path)
dev_path = util.ensure_path(dev_path) dev_path = util.ensure_path(dev_path)
meta_path = util.ensure_path(meta_path) meta_path = util.ensure_path(meta_path)
output_path = util.ensure_path(output_path)
if raw_text is not None: if raw_text is not None:
raw_text = list(srsly.read_jsonl(raw_text)) raw_text = list(srsly.read_jsonl(raw_text))
if not train_path or not train_path.exists(): if not train_path or not train_path.exists():
@ -222,6 +225,8 @@ def train(
msg.row(row_head, **row_settings) msg.row(row_head, **row_settings)
msg.row(["-" * width for width in row_settings["widths"]], **row_settings) msg.row(["-" * width for width in row_settings["widths"]], **row_settings)
try: try:
iter_since_best = 0
best_score = 0.
for i in range(n_iter): for i in range(n_iter):
train_docs = corpus.train_docs( train_docs = corpus.train_docs(
nlp, noise_level=noise_level, gold_preproc=gold_preproc, max_length=0 nlp, noise_level=noise_level, gold_preproc=gold_preproc, max_length=0
@ -276,7 +281,9 @@ def train(
gpu_wps = nwords / (end_time - start_time) gpu_wps = nwords / (end_time - start_time)
with Model.use_device("cpu"): with Model.use_device("cpu"):
nlp_loaded = util.load_model_from_path(epoch_model_path) nlp_loaded = util.load_model_from_path(epoch_model_path)
nlp_loaded.parser.cfg["beam_width"] for name, component in nlp_loaded.pipeline:
if hasattr(component, "cfg"):
component.cfg["beam_width"] = beam_width
dev_docs = list( dev_docs = list(
corpus.dev_docs(nlp_loaded, gold_preproc=gold_preproc) corpus.dev_docs(nlp_loaded, gold_preproc=gold_preproc)
) )
@ -328,6 +335,18 @@ def train(
gpu_wps=gpu_wps, gpu_wps=gpu_wps,
) )
msg.row(progress, **row_settings) msg.row(progress, **row_settings)
# early stopping
if early_stopping_iter is not None:
current_score = _score_for_model(meta)
if current_score < best_score:
iter_since_best += 1
else:
iter_since_best = 0
best_score = current_score
if iter_since_best >= early_stopping_iter:
msg.text("Early stopping, best iteration is: {}".format(i-iter_since_best))
msg.text("Best score = {}; Final iteration score = {}".format(best_score, current_score))
break
finally: finally:
with nlp.use_params(optimizer.averages): with nlp.use_params(optimizer.averages):
final_model_path = output_path / "model-final" final_model_path = output_path / "model-final"
@ -337,6 +356,18 @@ def train(
best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names) best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names)
msg.good("Created best model", best_model_path) msg.good("Created best model", best_model_path)
def _score_for_model(meta):
""" Returns mean score between tasks in pipeline that can be used for early stopping. """
mean_acc = list()
pipes = meta['pipeline']
acc = meta['accuracy']
if 'tagger' in pipes:
mean_acc.append(acc['tags_acc'])
if 'parser' in pipes:
mean_acc.append((acc['uas']+acc['las']) / 2)
if 'ner' in pipes:
mean_acc.append((acc['ents_p']+acc['ents_r']+acc['ents_f']) / 3)
return sum(mean_acc) / len(mean_acc)
@contextlib.contextmanager @contextlib.contextmanager
def _create_progress_bar(total): def _create_progress_bar(total):