Improve gold-standard alignment (#5711)

* Remove previous alignment

* Implement better alignment, using ragged data structure

* Use pytokenizations for alignment

* Fixes

* Fixes

* Fix overlapping entities in alignment

* Fix align split_sents

* Update test

* Commit align.py

* Try to appease setuptools

* Fix flake8

* use realistic entities for testing

* Update tests for better alignment

* Improve alignment heuristic

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
This commit is contained in:
Matthew Honnibal 2020-07-06 17:39:31 +02:00 committed by GitHub
parent a35236e5f0
commit cc477be952
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 167 additions and 245 deletions

View File

@ -7,6 +7,7 @@ requires = [
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.0a12,<8.0.0a20", "thinc>=8.0.0a12,<8.0.0a20",
"blis>=0.4.0,<0.5.0" "blis>=0.4.0,<0.5.0",
"pytokenizations"
] ]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"

View File

@ -14,6 +14,7 @@ numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
pydantic>=1.3.0,<2.0.0 pydantic>=1.3.0,<2.0.0
pytokenizations
# Official Python utilities # Official Python utilities
setuptools setuptools
packaging packaging

View File

@ -51,6 +51,7 @@ install_requires =
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
pydantic>=1.3.0,<2.0.0 pydantic>=1.3.0,<2.0.0
pytokenizations
# Official Python utilities # Official Python utilities
setuptools setuptools
packaging packaging

View File

@ -1,11 +1,11 @@
#!/usr/bin/env python #!/usr/bin/env python
from setuptools import Extension, setup, find_packages
import sys import sys
import platform import platform
from distutils.command.build_ext import build_ext from distutils.command.build_ext import build_ext
from distutils.sysconfig import get_python_inc from distutils.sysconfig import get_python_inc
import distutils.util import distutils.util
from distutils import ccompiler, msvccompiler from distutils import ccompiler, msvccompiler
from setuptools import Extension, setup, find_packages
import numpy import numpy
from pathlib import Path from pathlib import Path
import shutil import shutil
@ -23,7 +23,6 @@ Options.docstrings = True
PACKAGES = find_packages() PACKAGES = find_packages()
MOD_NAMES = [ MOD_NAMES = [
"spacy.gold.align",
"spacy.gold.example", "spacy.gold.example",
"spacy.parts_of_speech", "spacy.parts_of_speech",
"spacy.strings", "spacy.strings",

View File

@ -1,6 +1,6 @@
from .corpus import Corpus from .corpus import Corpus
from .example import Example from .example import Example
from .align import align from .align import Alignment
from .iob_utils import iob_to_biluo, biluo_to_iob from .iob_utils import iob_to_biluo, biluo_to_iob
from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags

View File

@ -1,8 +0,0 @@
cdef class Alignment:
cdef public object cost
cdef public object i2j
cdef public object j2i
cdef public object i2j_multi
cdef public object j2i_multi
cdef public object cand_to_gold
cdef public object gold_to_cand

30
spacy/gold/align.py Normal file
View File

@ -0,0 +1,30 @@
from typing import List
import numpy
from thinc.types import Ragged
from dataclasses import dataclass
import tokenizations
@dataclass
class Alignment:
x2y: Ragged
y2x: Ragged
@classmethod
def from_indices(cls, x2y: List[List[int]], y2x: List[List[int]]) -> "Alignment":
x2y = _make_ragged(x2y)
y2x = _make_ragged(y2x)
return Alignment(x2y=x2y, y2x=y2x)
@classmethod
def from_strings(cls, A: List[str], B: List[str]) -> "Alignment":
x2y, y2x = tokenizations.get_alignments(A, B)
return Alignment.from_indices(x2y=x2y, y2x=y2x)
def _make_ragged(indices):
lengths = numpy.array([len(x) for x in indices], dtype="i")
flat = []
for x in indices:
flat.extend(x)
return Ragged(numpy.array(flat, dtype="i"), lengths)

View File

@ -1,101 +0,0 @@
import numpy
from ..errors import Errors, AlignmentError
cdef class Alignment:
def __init__(self, spacy_words, gold_words):
# Do many-to-one alignment for misaligned tokens.
# If we over-segment, we'll have one gold word that covers a sequence
# of predicted words
# If we under-segment, we'll have one predicted word that covers a
# sequence of gold words.
# If we "mis-segment", we'll have a sequence of predicted words covering
# a sequence of gold words. That's many-to-many -- we don't do that
# except for NER spans where the start and end can be aligned.
cost, i2j, j2i, i2j_multi, j2i_multi = align(spacy_words, gold_words)
self.cost = cost
self.i2j = i2j
self.j2i = j2i
self.i2j_multi = i2j_multi
self.j2i_multi = j2i_multi
self.cand_to_gold = [(j if j >= 0 else None) for j in i2j]
self.gold_to_cand = [(i if i >= 0 else None) for i in j2i]
def align(tokens_a, tokens_b):
"""Calculate alignment tables between two tokenizations.
tokens_a (List[str]): The candidate tokenization.
tokens_b (List[str]): The reference tokenization.
RETURNS: (tuple): A 5-tuple consisting of the following information:
* cost (int): The number of misaligned tokens.
* a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`.
For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns
to `tokens_b[6]`. If there's no one-to-one alignment for a token,
it has the value -1.
* b2a (List[int]): The same as `a2b`, but mapping the other direction.
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a`
to indices in `tokens_b`, where multiple tokens of `tokens_a` align to
the same token of `tokens_b`.
* b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other
direction.
"""
tokens_a = _normalize_for_alignment(tokens_a)
tokens_b = _normalize_for_alignment(tokens_b)
cost = 0
a2b = numpy.empty(len(tokens_a), dtype="i")
b2a = numpy.empty(len(tokens_b), dtype="i")
a2b.fill(-1)
b2a.fill(-1)
a2b_multi = {}
b2a_multi = {}
i = 0
j = 0
offset_a = 0
offset_b = 0
while i < len(tokens_a) and j < len(tokens_b):
a = tokens_a[i][offset_a:]
b = tokens_b[j][offset_b:]
if a == b:
if offset_a == offset_b == 0:
a2b[i] = j
b2a[j] = i
elif offset_a == 0:
cost += 2
a2b_multi[i] = j
elif offset_b == 0:
cost += 2
b2a_multi[j] = i
offset_a = offset_b = 0
i += 1
j += 1
elif a == "":
assert offset_a == 0
cost += 1
i += 1
elif b == "":
assert offset_b == 0
cost += 1
j += 1
elif b.startswith(a):
cost += 1
if offset_a == 0:
a2b_multi[i] = j
i += 1
offset_a = 0
offset_b += len(a)
elif a.startswith(b):
cost += 1
if offset_b == 0:
b2a_multi[j] = i
j += 1
offset_b = 0
offset_a += len(b)
else:
assert "".join(tokens_a) != "".join(tokens_b)
raise AlignmentError(Errors.E186.format(tok_a=tokens_a, tok_b=tokens_b))
return cost, a2b, b2a, a2b_multi, b2a_multi
def _normalize_for_alignment(tokens):
return [w.replace(" ", "").lower() for w in tokens]

View File

@ -1,8 +1,7 @@
from ..tokens.doc cimport Doc from ..tokens.doc cimport Doc
from .align cimport Alignment
cdef class Example: cdef class Example:
cdef readonly Doc x cdef readonly Doc x
cdef readonly Doc y cdef readonly Doc y
cdef readonly Alignment _alignment cdef readonly object _alignment

View File

@ -6,10 +6,9 @@ from ..tokens.doc cimport Doc
from ..tokens.span cimport Span from ..tokens.span cimport Span
from ..tokens.span import Span from ..tokens.span import Span
from ..attrs import IDS from ..attrs import IDS
from .align cimport Alignment from .align import Alignment
from .iob_utils import biluo_to_iob, biluo_tags_from_offsets, biluo_tags_from_doc from .iob_utils import biluo_to_iob, biluo_tags_from_offsets, biluo_tags_from_doc
from .iob_utils import spans_from_biluo_tags from .iob_utils import spans_from_biluo_tags
from .align import Alignment
from ..errors import Errors, Warnings from ..errors import Errors, Warnings
from ..syntax import nonproj from ..syntax import nonproj
@ -28,7 +27,7 @@ cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
cdef class Example: cdef class Example:
def __init__(self, Doc predicted, Doc reference, *, Alignment alignment=None): def __init__(self, Doc predicted, Doc reference, *, alignment=None):
""" Doc can either be text, or an actual Doc """ """ Doc can either be text, or an actual Doc """
if predicted is None: if predicted is None:
raise TypeError(Errors.E972.format(arg="predicted")) raise TypeError(Errors.E972.format(arg="predicted"))
@ -83,34 +82,38 @@ cdef class Example:
gold_words = [token.orth_ for token in self.reference] gold_words = [token.orth_ for token in self.reference]
if gold_words == []: if gold_words == []:
gold_words = spacy_words gold_words = spacy_words
self._alignment = Alignment(spacy_words, gold_words) self._alignment = Alignment.from_strings(spacy_words, gold_words)
return self._alignment return self._alignment
def get_aligned(self, field, as_string=False): def get_aligned(self, field, as_string=False):
"""Return an aligned array for a token attribute.""" """Return an aligned array for a token attribute."""
i2j_multi = self.alignment.i2j_multi align = self.alignment.x2y
cand_to_gold = self.alignment.cand_to_gold
vocab = self.reference.vocab vocab = self.reference.vocab
gold_values = self.reference.to_array([field]) gold_values = self.reference.to_array([field])
output = [None] * len(self.predicted) output = [None] * len(self.predicted)
for i, gold_i in enumerate(cand_to_gold): for token in self.predicted:
if self.predicted[i].text.isspace(): if token.is_space:
output[i] = None output[token.i] = None
if gold_i is None:
if i in i2j_multi:
output[i] = gold_values[i2j_multi[i]]
else: else:
output[i] = None values = gold_values[align[token.i].dataXd]
values = values.ravel()
if len(values) == 0:
output[token.i] = None
elif len(values) == 1:
output[token.i] = values[0]
elif len(set(list(values))) == 1:
# If all aligned tokens have the same value, use it.
output[token.i] = values[0]
else: else:
output[i] = gold_values[gold_i] output[token.i] = None
if as_string and field not in ["ENT_IOB", "SENT_START"]: if as_string and field not in ["ENT_IOB", "SENT_START"]:
output = [vocab.strings[o] if o is not None else o for o in output] output = [vocab.strings[o] if o is not None else o for o in output]
return output return output
def get_aligned_parse(self, projectivize=True): def get_aligned_parse(self, projectivize=True):
cand_to_gold = self.alignment.cand_to_gold cand_to_gold = self.alignment.x2y
gold_to_cand = self.alignment.gold_to_cand gold_to_cand = self.alignment.y2x
aligned_heads = [None] * self.x.length aligned_heads = [None] * self.x.length
aligned_deps = [None] * self.x.length aligned_deps = [None] * self.x.length
heads = [token.head.i for token in self.y] heads = [token.head.i for token in self.y]
@ -118,52 +121,51 @@ cdef class Example:
if projectivize: if projectivize:
heads, deps = nonproj.projectivize(heads, deps) heads, deps = nonproj.projectivize(heads, deps)
for cand_i in range(self.x.length): for cand_i in range(self.x.length):
gold_i = cand_to_gold[cand_i] if cand_to_gold.lengths[cand_i] == 1:
if gold_i is not None: # Alignment found gold_i = cand_to_gold[cand_i].dataXd[0, 0]
gold_head = gold_to_cand[heads[gold_i]] if gold_to_cand.lengths[heads[gold_i]] == 1:
if gold_head is not None: aligned_heads[cand_i] = int(gold_to_cand[heads[gold_i]].dataXd[0, 0])
aligned_heads[cand_i] = gold_head
aligned_deps[cand_i] = deps[gold_i] aligned_deps[cand_i] = deps[gold_i]
return aligned_heads, aligned_deps return aligned_heads, aligned_deps
def get_aligned_spans_x2y(self, x_spans):
return self._get_aligned_spans(self.y, x_spans, self.alignment.x2y)
def get_aligned_spans_y2x(self, y_spans):
return self._get_aligned_spans(self.x, y_spans, self.alignment.y2x)
def _get_aligned_spans(self, doc, spans, align):
seen = set()
output = []
for span in spans:
indices = align[span.start : span.end].data.ravel()
indices = [idx for idx in indices if idx not in seen]
if len(indices) >= 1:
aligned_span = Span(doc, indices[0], indices[-1] + 1, label=span.label)
target_text = span.text.lower().strip().replace(" ", "")
our_text = aligned_span.text.lower().strip().replace(" ", "")
if our_text == target_text:
output.append(aligned_span)
seen.update(indices)
return output
def get_aligned_ner(self): def get_aligned_ner(self):
if not self.y.is_nered: if not self.y.is_nered:
return [None] * len(self.x) # should this be 'missing' instead of 'None' ? return [None] * len(self.x) # should this be 'missing' instead of 'None' ?
x_text = self.x.text x_ents = self.get_aligned_spans_y2x(self.y.ents)
# Get a list of entities, and make spans for non-entity tokens. # Default to 'None' for missing values
# We then work through the spans in order, trying to find them in
# the text and using that to get the offset. Any token that doesn't
# get a tag set this way is tagged None.
# This could maybe be improved? It at least feels easy to reason about.
y_spans = list(self.y.ents)
y_spans.sort()
x_text_offset = 0
x_spans = []
for y_span in y_spans:
if x_text.count(y_span.text) >= 1:
start_char = x_text.index(y_span.text) + x_text_offset
end_char = start_char + len(y_span.text)
x_span = self.x.char_span(start_char, end_char, label=y_span.label)
if x_span is not None:
x_spans.append(x_span)
x_text = self.x.text[end_char:]
x_text_offset = end_char
x_tags = biluo_tags_from_offsets( x_tags = biluo_tags_from_offsets(
self.x, self.x,
[(e.start_char, e.end_char, e.label_) for e in x_spans], [(e.start_char, e.end_char, e.label_) for e in x_ents],
missing=None missing=None
) )
gold_to_cand = self.alignment.gold_to_cand # Now fill the tokens we can align to O.
for token in self.y: O = 2 # I=1, O=2, B=3
if token.ent_iob_ == "O": for i, ent_iob in enumerate(self.get_aligned("ENT_IOB")):
cand_i = gold_to_cand[token.i] if x_tags[i] is None:
if cand_i is not None and x_tags[cand_i] is None: if ent_iob == O:
x_tags[cand_i] = "O" x_tags[i] = "O"
i2j_multi = self.alignment.i2j_multi elif self.x[i].is_space:
for i, tag in enumerate(x_tags):
if tag is None and i in i2j_multi:
gold_i = i2j_multi[i]
if gold_i is not None and self.y[gold_i].ent_iob_ == "O":
x_tags[i] = "O" x_tags[i] = "O"
return x_tags return x_tags
@ -194,25 +196,22 @@ cdef class Example:
links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0} links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0}
return links return links
def split_sents(self): def split_sents(self):
""" Split the token annotations into multiple Examples based on """ Split the token annotations into multiple Examples based on
sent_starts and return a list of the new Examples""" sent_starts and return a list of the new Examples"""
if not self.reference.is_sentenced: if not self.reference.is_sentenced:
return [self] return [self]
sent_starts = self.get_aligned("SENT_START") align = self.alignment.y2x
sent_starts.append(1) # appending virtual start of a next sentence to facilitate search seen_indices = set()
output = [] output = []
pred_start = 0 for y_sent in self.reference.sents:
for sent in self.reference.sents: indices = align[y_sent.start : y_sent.end].data.ravel()
new_ref = sent.as_doc() indices = [idx for idx in indices if idx not in seen_indices]
pred_end = sent_starts.index(1, pred_start+1) # find where the next sentence starts if indices:
new_pred = self.predicted[pred_start : pred_end].as_doc() x_sent = self.predicted[indices[0] : indices[-1] + 1]
output.append(Example(new_pred, new_ref)) output.append(Example(x_sent.as_doc(), y_sent.as_doc()))
pred_start = pred_end seen_indices.update(indices)
return output return output
property text: property text:

View File

@ -326,10 +326,11 @@ class Scorer(object):
for token in doc: for token in doc:
if token.orth_.isspace(): if token.orth_.isspace():
continue continue
gold_i = align.cand_to_gold[token.i] if align.x2y.lengths[token.i] != 1:
if gold_i is None:
self.tokens.fp += 1 self.tokens.fp += 1
gold_i = None
else: else:
gold_i = align.x2y[token.i].dataXd[0, 0]
self.tokens.tp += 1 self.tokens.tp += 1
cand_tags.add((gold_i, token.tag_)) cand_tags.add((gold_i, token.tag_))
cand_pos.add((gold_i, token.pos_)) cand_pos.add((gold_i, token.pos_))
@ -345,7 +346,10 @@ class Scorer(object):
if token.is_sent_start: if token.is_sent_start:
cand_sent_starts.add(gold_i) cand_sent_starts.add(gold_i)
if token.dep_.lower() not in punct_labels and token.orth_.strip(): if token.dep_.lower() not in punct_labels and token.orth_.strip():
gold_head = align.cand_to_gold[token.head.i] if align.x2y.lengths[token.head.i] == 1:
gold_head = align.x2y[token.head.i].dataXd[0, 0]
else:
gold_head = None
# None is indistinct, so we can't just add it to the set # None is indistinct, so we can't just add it to the set
# Multiple (None, None) deps are possible # Multiple (None, None) deps are possible
if gold_i is None or gold_head is None: if gold_i is None or gold_head is None:
@ -381,15 +385,9 @@ class Scorer(object):
gold_ents.add(gold_ent) gold_ents.add(gold_ent)
gold_per_ents[ent.label_].add((ent.label_, ent.start, ent.end - 1)) gold_per_ents[ent.label_].add((ent.label_, ent.start, ent.end - 1))
cand_per_ents = {ent_label: set() for ent_label in ent_labels} cand_per_ents = {ent_label: set() for ent_label in ent_labels}
for ent in doc.ents: for ent in example.get_aligned_spans_x2y(doc.ents):
first = align.cand_to_gold[ent.start] cand_ents.add((ent.label_, ent.start, ent.end - 1))
last = align.cand_to_gold[ent.end - 1] cand_per_ents[ent.label_].add((ent.label_, ent.start, ent.end - 1))
if first is None or last is None:
self.ner.fp += 1
self.ner_per_ents[ent.label_].fp += 1
else:
cand_ents.add((ent.label_, first, last))
cand_per_ents[ent.label_].add((ent.label_, first, last))
# Scores per ent # Scores per ent
for k, v in self.ner_per_ents.items(): for k, v in self.ner_per_ents.items():
if k in cand_per_ents: if k in cand_per_ents:

View File

@ -1,6 +1,6 @@
from spacy.errors import AlignmentError from spacy.errors import AlignmentError
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
from spacy.gold import spans_from_biluo_tags, iob_to_biluo, align from spacy.gold import spans_from_biluo_tags, iob_to_biluo
from spacy.gold import Corpus, docs_to_json from spacy.gold import Corpus, docs_to_json
from spacy.gold.example import Example from spacy.gold.example import Example
from spacy.gold.converters import json2docs from spacy.gold.converters import json2docs
@ -271,75 +271,76 @@ def test_split_sentences(en_vocab):
assert split_examples[1].text == "had loads of fun " assert split_examples[1].text == "had loads of fun "
@pytest.mark.xfail(reason="Alignment should be fixed after example refactor")
def test_gold_biluo_one_to_many(en_vocab, en_tokenizer): def test_gold_biluo_one_to_many(en_vocab, en_tokenizer):
words = ["I", "flew to", "San Francisco Valley", "."] words = ["Mr. and ", "Mrs. Smith", "flew to", "San Francisco Valley", "."]
spaces = [True, True, False, False] spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces) doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] prefix = "Mr. and Mrs. Smith flew to "
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr. and Mrs. Smith", "flew", "to", "San", "Francisco", "Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "U-LOC", "O"] assert ner_tags == ["O", "O", "O", "U-LOC", "O"]
entities = [ entities = [
(len("I "), len("I flew to"), "ORG"), (len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
] ]
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] gold_words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "U-ORG", "U-LOC", "O"] assert ner_tags == ["O", "U-PERSON", "O", "U-LOC", "O"]
entities = [ entities = [
(len("I "), len("I flew"), "ORG"), (len("Mr. and "), len("Mr. and Mrs."), "PERSON"), # "Mrs." is a Person
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
] ]
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] gold_words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", None, "U-LOC", "O"] assert ner_tags == ["O", None, "O", "U-LOC", "O"]
def test_gold_biluo_many_to_one(en_vocab, en_tokenizer): def test_gold_biluo_many_to_one(en_vocab, en_tokenizer):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."] words = ["Mr. and", "Mrs.", "Smith", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
prefix = "Mr. and Mrs. Smith flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr. and Mrs. Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
entities = [
(len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
(len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
]
gold_words = ["Mr. and", "Mrs. Smith", "flew to", "San Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "B-PERSON", "L-PERSON", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
words = ["Mr. and Mrs.", "Smith", "flew", "to", "San Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, False] spaces = [True, True, True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces) doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] prefix = "Mr. and Mrs. Smith flew to "
gold_words = ["I", "flew to", "San Francisco Valley", "."] entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["Mr.", "and Mrs. Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"] assert ner_tags == ["O", "O", "O", "O", "B-LOC", "L-LOC", "O"]
entities = [ entities = [
(len("I "), len("I flew to"), "ORG"), (len("Mr. and "), len("Mr. and Mrs. Smith"), "PERSON"), # "Mrs. Smith" is a PERSON
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"), (len(prefix), len(prefix + "San Francisco Valley"), "LOC"),
] ]
gold_words = ["I", "flew to", "San Francisco Valley", "."] gold_words = ["Mr. and", "Mrs. Smith", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities}) example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "B-ORG", "L-ORG", "B-LOC", "I-LOC", "L-LOC", "O"] assert ner_tags == [None, None, "O", "O", "B-LOC", "L-LOC", "O"]
@pytest.mark.xfail(reason="Alignment should be fixed after example refactor")
def test_gold_biluo_misaligned(en_vocab, en_tokenizer):
words = ["I flew", "to", "San Francisco", "Valley", "."]
spaces = [True, True, True, False, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
gold_words = ["I", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == ["O", "O", "B-LOC", "L-LOC", "O"]
entities = [
(len("I "), len("I flew to"), "ORG"),
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
]
gold_words = ["I", "flew to", "San", "Francisco Valley", "."]
example = Example.from_dict(doc, {"words": gold_words, "entities": entities})
ner_tags = example.get_aligned_ner()
assert ner_tags == [None, None, "B-LOC", "L-LOC", "O"]
def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer): def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
@ -349,7 +350,8 @@ def test_gold_biluo_additional_whitespace(en_vocab, en_tokenizer):
"I flew to San Francisco Valley.", "I flew to San Francisco Valley.",
) )
doc = Doc(en_vocab, words=words, spaces=spaces) doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")] prefix = "I flew to "
entities = [(len(prefix), len(prefix + "San Francisco Valley"), "LOC")]
gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."] gold_words = ["I", "flew", " ", "to", "San Francisco Valley", "."]
gold_spaces = [True, True, False, True, False, False] gold_spaces = [True, True, False, True, False, False]
example = Example.from_dict( example = Example.from_dict(
@ -514,6 +516,7 @@ def test_make_orth_variants(doc):
make_orth_variants_example(nlp, train_example, orth_variant_level=0.2) make_orth_variants_example(nlp, train_example, orth_variant_level=0.2)
@pytest.mark.skip("Outdated")
@pytest.mark.parametrize( @pytest.mark.parametrize(
"tokens_a,tokens_b,expected", "tokens_a,tokens_b,expected",
[ [
@ -537,12 +540,12 @@ def test_make_orth_variants(doc):
([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})), ([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})),
], ],
) )
def test_align(tokens_a, tokens_b, expected): def test_align(tokens_a, tokens_b, expected): # noqa
cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b) cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b) # noqa
assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected # noqa
# check symmetry # check symmetry
cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a) cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a) # noqa
assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected # noqa
def test_goldparse_startswith_space(en_tokenizer): def test_goldparse_startswith_space(en_tokenizer):
@ -556,7 +559,7 @@ def test_goldparse_startswith_space(en_tokenizer):
doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads} doc, {"words": gold_words, "entities": entities, "deps": deps, "heads": heads}
) )
ner_tags = example.get_aligned_ner() ner_tags = example.get_aligned_ner()
assert ner_tags == [None, "U-DATE"] assert ner_tags == ["O", "U-DATE"]
assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"] assert example.get_aligned("DEP", as_string=True) == [None, "ROOT"]

View File

@ -55,7 +55,7 @@ def test_aligned_tags():
predicted = Doc(vocab, words=pred_words) predicted = Doc(vocab, words=pred_words)
example = Example.from_dict(predicted, annots) example = Example.from_dict(predicted, annots)
aligned_tags = example.get_aligned("tag", as_string=True) aligned_tags = example.get_aligned("tag", as_string=True)
assert aligned_tags == ["VERB", "DET", None, "SCONJ", "PRON", "VERB", "VERB"] assert aligned_tags == ["VERB", "DET", "NOUN", "SCONJ", "PRON", "VERB", "VERB"]
def test_aligned_tags_multi(): def test_aligned_tags_multi():