Merge branch 'v2.x' into spacy.io

This commit is contained in:
Ines Montani 2021-02-01 11:48:56 +11:00
commit cce428298b
68 changed files with 1357 additions and 501 deletions

106
.github/contributors/jganseman.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Joachim Ganseman |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 26/01/2021 |
| GitHub username | jganseman |
| Website (optional) | www.ganseman.be |

106
.github/contributors/jumasheff.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Murat Jumashev |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 25.01.2021 |
| GitHub username | jumasheff |
| Website (optional) | |

106
.github/contributors/tupui.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Pamphile Roy |
| Company name (if applicable) | N/A |
| Title or role (if applicable) | N/A |
| Date | January 29th, 2021 |
| GitHub username | tupui |
| Website (optional) | N/A |

View File

@ -128,8 +128,6 @@ def get_version(model, comp):
def download_model(filename, user_pip_args=None):
download_url = about.__download_url__ + "/" + filename
pip_args = ["--no-cache-dir"]
if user_pip_args:
pip_args.extend(user_pip_args)
pip_args = user_pip_args if user_pip_args is not None else []
cmd = [sys.executable, "-m", "pip", "install"] + pip_args + [download_url]
return subprocess.call(cmd, env=os.environ.copy())

View File

@ -591,6 +591,7 @@ class Errors(object):
E200 = ("Specifying a base model with a pretrained component '{component}' "
"can not be combined with adding a pretrained Tok2Vec layer.")
E201 = ("Span index out of range.")
E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.")
@add_codes

View File

@ -9,12 +9,6 @@ def noun_chunks(doclike):
def is_verb_token(tok):
return tok.pos in [VERB, AUX]
def next_token(tok):
try:
return tok.nbor()
except IndexError:
return None
def get_left_bound(doc, root):
left_bound = root
for tok in reversed(list(root.lefts)):
@ -67,7 +61,6 @@ def noun_chunks(doclike):
np_right_deps = [doc.vocab.strings.add(label) for label in right_labels]
stop_deps = [doc.vocab.strings.add(label) for label in stop_labels]
chunks = []
prev_right = -1
for token in doclike:
if token.pos in [PROPN, NOUN, PRON]:

View File

@ -20,27 +20,23 @@ def noun_chunks(doclike):
np_left_deps = [doc.vocab.strings.add(label) for label in left_labels]
np_right_deps = [doc.vocab.strings.add(label) for label in right_labels]
stop_deps = [doc.vocab.strings.add(label) for label in stop_labels]
prev_right = -1
for token in doclike:
if token.pos in [PROPN, NOUN, PRON]:
left, right = noun_bounds(
doc, token, np_left_deps, np_right_deps, stop_deps
)
if left.i <= prev_right:
continue
yield left.i, right.i + 1, np_label
token = right
token = next_token(token)
prev_right = right.i
def is_verb_token(token):
return token.pos in [VERB, AUX]
def next_token(token):
try:
return token.nbor()
except IndexError:
return None
def noun_bounds(doc, root, np_left_deps, np_right_deps, stop_deps):
left_bound = root
for token in reversed(list(root.lefts)):

31
spacy/lang/ky/__init__.py Normal file
View File

@ -0,0 +1,31 @@
# coding: utf8
from __future__ import unicode_literals
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...attrs import LANG
from ...language import Language
from ...util import update_exc
class KyrgyzDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: "ky"
lex_attr_getters.update(LEX_ATTRS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
infixes = tuple(TOKENIZER_INFIXES)
stop_words = STOP_WORDS
class Kyrgyz(Language):
lang = "ky"
Defaults = KyrgyzDefaults
__all__ = ["Kyrgyz"]

19
spacy/lang/ky/examples.py Normal file
View File

@ -0,0 +1,19 @@
# coding: utf8
from __future__ import unicode_literals
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ky.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Apple Улуу Британия стартабын $1 миллиардга сатып алууну көздөөдө.",
"Автоном автомобилдерди камсыздоо жоопкерчилиги өндүрүүчүлөргө артылды.",
"Сан-Франциско тротуар менен жүрүүчү робот-курьерлерге тыю салууну караштырууда.",
"Лондон - Улуу Британияда жайгашкан ири шаар.",
"Кайдасың?",
"Франциянын президенти ким?",
"Америка Кошмо Штаттарынын борбор калаасы кайсы шаар?",
"Барак Обама качан төрөлгөн?",
]

View File

@ -0,0 +1,51 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
_num_words = [
"нөл",
"ноль",
"бир",
"эки",
"үч",
"төрт",
"беш",
"алты",
"жети",
"сегиз",
"тогуз",
"он",
"жыйырма",
"отуз",
"кырк",
"элүү",
"алтымыш",
"жетмиш",
"сексен",
"токсон",
"жүз",
"миң",
"миллион",
"миллиард",
"триллион",
"триллиард",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text in _num_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -0,0 +1,24 @@
# coding: utf8
from __future__ import unicode_literals
from ..char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER, CONCAT_QUOTES, HYPHENS
from ..char_classes import LIST_ELLIPSES, LIST_ICONS
_hyphens_no_dash = HYPHENS.replace("-", "").strip("|").replace("||", "")
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[{al}])\.(?=[{au}])".format(al=ALPHA_LOWER, au=ALPHA_UPPER),
r"(?<=[{a}])[,!?/()]+(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}{q}])[:<>=](?=[{a}])".format(a=ALPHA, q=CONCAT_QUOTES),
r"(?<=[{a}])--(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])([{q}\)\]\(\[])(?=[\-{a}])".format(a=ALPHA, q=CONCAT_QUOTES),
r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=_hyphens_no_dash),
r"(?<=[0-9])-(?=[{a}])".format(a=ALPHA),
r"(?<=[0-9])-(?=[0-9])",
]
)
TOKENIZER_INFIXES = _infixes

View File

@ -0,0 +1,45 @@
# encoding: utf8
from __future__ import unicode_literals
STOP_WORDS = set(
"""
ага адам айтты айтымында айтып ал алар
алардын алган алуу алып анда андан аны
анын ар
бар басма баш башка башкы башчысы берген
биз билдирген билдирди бир биринчи бирок
бишкек болгон болот болсо болуп боюнча
буга бул
гана
да дагы деген деди деп
жана жатат жаткан жаңы же жогорку жок жол
жолу
кабыл калган кандай карата каршы катары
келген керек кийин кол кылмыш кыргыз
күнү көп
маалымат мамлекеттик мен менен миң
мурдагы мыйзам мындай мүмкүн
ошол ошондой
сүрөт сөз
тарабынан турган тууралуу
укук учурда
чейин чек
экенин эки эл эле эмес эми эч
үч үчүн
өз
""".split()
)

View File

@ -0,0 +1,55 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import ORTH, LEMMA, NORM
_exc = {}
_abbrev_exc = [
# Weekdays abbreviations
{ORTH: "дүй", LEMMA: "дүйшөмбү"},
{ORTH: "шей", LEMMA: "шейшемби"},
{ORTH: "шар", LEMMA: "шаршемби"},
{ORTH: "бей", LEMMA: "бейшемби"},
{ORTH: "жум", LEMMA: "жума"},
{ORTH: "ишм", LEMMA: "ишемби"},
{ORTH: "жек", LEMMA: "жекшемби"},
# Months abbreviations
{ORTH: "янв", LEMMA: "январь"},
{ORTH: "фев", LEMMA: "февраль"},
{ORTH: "мар", LEMMA: "март"},
{ORTH: "апр", LEMMA: "апрель"},
{ORTH: "июн", LEMMA: "июнь"},
{ORTH: "июл", LEMMA: "июль"},
{ORTH: "авг", LEMMA: "август"},
{ORTH: "сен", LEMMA: "сентябрь"},
{ORTH: "окт", LEMMA: "октябрь"},
{ORTH: "ноя", LEMMA: "ноябрь"},
{ORTH: "дек", LEMMA: "декабрь"},
# Number abbreviations
{ORTH: "млрд", LEMMA: "миллиард"},
{ORTH: "млн", LEMMA: "миллион"},
]
for abbr in _abbrev_exc:
for orth in (abbr[ORTH], abbr[ORTH].capitalize(), abbr[ORTH].upper()):
_exc[orth] = [{ORTH: orth, LEMMA: abbr[LEMMA], NORM: abbr[LEMMA]}]
_exc[orth + "."] = [{ORTH: orth + ".", LEMMA: abbr[LEMMA], NORM: abbr[LEMMA]}]
for exc_data in [ # "etc." abbreviations
{ORTH: "ж.б.у.с.", NORM: "жана башка ушул сыяктуу"},
{ORTH: "ж.б.", NORM: "жана башка"},
{ORTH: "ж.", NORM: "жыл"},
{ORTH: "б.з.ч.", NORM: "биздин заманга чейин"},
{ORTH: "б.з.", NORM: "биздин заман"},
{ORTH: "кк.", NORM: "кылымдар"},
{ORTH: "жж.", NORM: "жылдар"},
{ORTH: "к.", NORM: "кылым"},
{ORTH: "көч.", NORM: "көчөсү"},
{ORTH: "м-н", NORM: "менен"},
{ORTH: "б-ча", NORM: "боюнча"},
]:
exc_data[LEMMA] = exc_data[NORM]
_exc[exc_data[ORTH]] = [exc_data]
TOKENIZER_EXCEPTIONS = _exc

View File

@ -313,7 +313,8 @@ cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, e
# We need to deduplicate, because we could otherwise arrive at the same
# match through two paths, e.g. .?.? matching 'a'. Are we matching the
# first .?, or the second .? -- it doesn't matter, it's just one match.
if match not in seen:
# Skip 0-length matches. (TODO: fix algorithm)
if match not in seen and matches[i].length > 0:
output.append(match)
seen.add(match)
return output

View File

@ -8,6 +8,7 @@ from preshed.maps cimport map_init, map_set, map_get, map_clear, map_iter
import warnings
from ..attrs import IDS
from ..attrs cimport ORTH, POS, TAG, DEP, LEMMA
from ..structs cimport TokenC
from ..tokens.token cimport Token
@ -58,9 +59,11 @@ cdef class PhraseMatcher:
attr = attr.upper()
if attr == "TEXT":
attr = "ORTH"
if attr == "IS_SENT_START":
attr = "SENT_START"
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
raise ValueError(Errors.E152.format(attr=attr))
self.attr = self.vocab.strings[attr]
self.attr = IDS.get(attr)
def __len__(self):
"""Get the number of match IDs added to the matcher.

View File

@ -262,6 +262,11 @@ def tt_tokenizer():
return get_lang_class("tt").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def ky_tokenizer():
return get_lang_class("ky").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def uk_tokenizer():
pytest.importorskip("pymorphy2")

View File

@ -197,6 +197,12 @@ def test_spans_by_character(doc):
assert span1.end_char == span2.end_char
assert span2.label_ == "GPE"
# unsupported alignment mode
with pytest.raises(ValueError):
span2 = doc.char_span(
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
)
def test_span_to_array(doc):
span = doc[1:-2]

View File

View File

@ -0,0 +1,91 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
INFIX_HYPHEN_TESTS = [
("Бала-чака жакшыбы?", "Бала-чака жакшыбы ?".split()),
("Кыз-келиндер кийими.", "Кыз-келиндер кийими .".split()),
]
PUNC_INSIDE_WORDS_TESTS = [
(
"Пассажир саны - 2,13 млн — киши/күнүнө (2010), 783,9 млн. киши/жылына.",
"Пассажир саны - 2,13 млн — киши / күнүнө ( 2010 ) ,"
" 783,9 млн. киши / жылына .".split(),
),
('То"кой', 'То " кой'.split()),
]
MIXED_ORDINAL_NUMS_TESTS = [
("Эртең 22-январь...", "Эртең 22 - январь ...".split())
]
ABBREV_TESTS = [
("Маселе б-ча эртең келет", "Маселе б-ча эртең келет".split()),
("Ахунбаев көч. турат.", "Ахунбаев көч. турат .".split()),
("«3-жылы (б.з.ч.) туулган", "« 3 - жылы ( б.з.ч. ) туулган".split()),
("Жүгөрү ж.б. дандар колдонулат", "Жүгөрү ж.б. дандар колдонулат".split()),
("3-4 кк. курулган.", "3 - 4 кк. курулган .".split()),
]
NAME_ABBREV_TESTS = [
("М.Жумаш", "М.Жумаш".split()),
("М.жумаш", "М.жумаш".split()),
("м.Жумаш", "м . Жумаш".split()),
("Жумаш М.Н.", "Жумаш М.Н.".split()),
("Жумаш.", "Жумаш .".split()),
]
TYPOS_IN_PUNC_TESTS = [
("«3-жылда , туулган", "« 3 - жылда , туулган".split()),
("«3-жылда,туулган", "« 3 - жылда , туулган".split()),
("«3-жылда,туулган.", "« 3 - жылда , туулган .".split()),
("Ал иштейт(качан?)", "Ал иштейт ( качан ? )".split()),
("Ал (качан?)иштейт", "Ал ( качан ?) иштейт".split()), # "?)" => "?)" or "? )"
]
LONG_TEXTS_TESTS = [
(
"Алыскы өлкөлөргө аздыр-көптүр татаалыраак жүрүштөргө чыккандар "
"азыраак: ал бир топ кымбат жана логистика маселесинин айынан "
"кыйла татаал. Мисалы, январдагы майрамдарда Мароккого үчүнчү "
"категориядагы маршрутка (100 чакырымдан кем эмес) барып "
"келгенге аракет кылдык.",
"Алыскы өлкөлөргө аздыр-көптүр татаалыраак жүрүштөргө чыккандар "
"азыраак : ал бир топ кымбат жана логистика маселесинин айынан "
"кыйла татаал . Мисалы , январдагы майрамдарда Мароккого үчүнчү "
"категориядагы маршрутка ( 100 чакырымдан кем эмес ) барып "
"келгенге аракет кылдык .".split(),
)
]
TESTCASES = (
INFIX_HYPHEN_TESTS
+ PUNC_INSIDE_WORDS_TESTS
+ MIXED_ORDINAL_NUMS_TESTS
+ ABBREV_TESTS
+ NAME_ABBREV_TESTS
+ LONG_TEXTS_TESTS
+ TYPOS_IN_PUNC_TESTS
)
NORM_TESTCASES = [
(
"ит, мышык ж.б.у.с. үй жаныбарлары.",
["ит", ",", "мышык", "жана башка ушул сыяктуу", "үй", "жаныбарлары", "."],
)
]
@pytest.mark.parametrize("text,expected_tokens", TESTCASES)
def test_ky_tokenizer_handles_testcases(ky_tokenizer, text, expected_tokens):
tokens = [token.text for token in ky_tokenizer(text) if not token.is_space]
assert expected_tokens == tokens
@pytest.mark.parametrize("text,norms", NORM_TESTCASES)
def test_ky_tokenizer_handles_norm_exceptions(ky_tokenizer, text, norms):
tokens = ky_tokenizer(text)
assert [token.norm_ for token in tokens] == norms

View File

@ -493,3 +493,13 @@ def test_matcher_remove_zero_operator(en_vocab):
assert "Rule" in matcher
matcher.remove("Rule")
assert "Rule" not in matcher
def test_matcher_no_zero_length(en_vocab):
doc = Doc(en_vocab, words=["a", "b"])
doc[0].tag_ = "A"
doc[1].tag_ = "B"
doc.is_tagged = True
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"TAG": "C", "OP": "?"}]])
assert len(matcher(doc)) == 0

View File

@ -290,3 +290,8 @@ def test_phrase_matcher_pickle(en_vocab):
# clunky way to vaguely check that callback is unpickled
(vocab, docs, callbacks, attr) = matcher_unpickled.__reduce__()[1]
assert isinstance(callbacks.get("TEST2"), Mock)
@pytest.mark.parametrize("attr", ["SENT_START", "IS_SENT_START"])
def test_phrase_matcher_sent_start(en_vocab, attr):
matcher = PhraseMatcher(en_vocab, attr=attr)

View File

@ -0,0 +1,9 @@
# coding: utf8
from __future__ import unicode_literals
def test_issue6755(en_tokenizer):
doc = en_tokenizer("This is a magnificent sentence.")
span = doc[:0]
assert span.text_with_ws == ""
assert span.text == ""

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals
import pytest
import re
from spacy.util import get_lang_class
from spacy.tokenizer import Tokenizer
@ -22,6 +23,17 @@ def test_serialize_custom_tokenizer(en_vocab, en_tokenizer):
tokenizer_bytes = tokenizer.to_bytes()
Tokenizer(en_vocab).from_bytes(tokenizer_bytes)
# test that empty/unset values are set correctly on deserialization
tokenizer = get_lang_class("en").Defaults.create_tokenizer()
tokenizer.token_match = re.compile("test").match
assert tokenizer.rules != {}
assert tokenizer.token_match is not None
assert tokenizer.url_match is not None
tokenizer.from_bytes(tokenizer_bytes)
assert tokenizer.rules == {}
assert tokenizer.token_match is None
assert tokenizer.url_match is None
tokenizer = Tokenizer(en_vocab, rules={"ABC.": [{"ORTH": "ABC"}, {"ORTH": "."}]})
tokenizer.rules = {}
tokenizer_bytes = tokenizer.to_bytes()

View File

@ -608,10 +608,16 @@ cdef class Tokenizer:
self.suffix_search = re.compile(data["suffix_search"]).search
if "infix_finditer" in data and isinstance(data["infix_finditer"], basestring_):
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
# for token_match and url_match, set to None to override the language
# defaults if no regex is provided
if "token_match" in data and isinstance(data["token_match"], basestring_):
self.token_match = re.compile(data["token_match"]).match
else:
self.token_match = None
if "url_match" in data and isinstance(data["url_match"], basestring_):
self.url_match = re.compile(data["url_match"]).match
else:
self.url_match = None
if "rules" in data and isinstance(data["rules"], dict):
# make sure to hard reset the cache to remove data from the default exceptions
self._rules = {}

View File

@ -379,8 +379,9 @@ cdef class Doc:
label = self.vocab.strings.add(label)
if not isinstance(kb_id, int):
kb_id = self.vocab.strings.add(kb_id)
if alignment_mode not in ("strict", "contract", "expand"):
alignment_mode = "strict"
alignment_modes = ("strict", "contract", "expand")
if alignment_mode not in alignment_modes:
raise ValueError(Errors.E202.format(mode=alignment_mode, modes=", ".join(alignment_modes)))
cdef int start = token_by_char(self.c, self.length, start_idx)
if start < 0 or (alignment_mode == "strict" and start_idx != self[start].idx):
return None

View File

@ -500,7 +500,7 @@ cdef class Span:
def text(self):
"""RETURNS (unicode): The original verbatim text of the span."""
text = self.text_with_ws
if self[-1].whitespace_:
if len(self) > 0 and self[-1].whitespace_:
text = text[:-1]
return text

View File

@ -513,7 +513,7 @@ def minibatch(items, size=8):
size_ = size
items = iter(items)
while True:
batch_size = next(size_)
batch_size = next(size_, 0) # StopIteration isn't handled in generators in Python >= 3.7.
batch = list(itertools.islice(items, int(batch_size)))
if len(batch) == 0:
break

View File

@ -250,7 +250,7 @@ POS tag set.
<Infobox title="Annotation schemes for other models">
For the label schemes used by the other models, see the respective `tag_map.py`
in [`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang).
in [`spacy/lang`](https://github.com/explosion/spaCy/tree/v2.x/spacy/lang).
</Infobox>
@ -564,7 +564,7 @@ Here's an example of dependencies, part-of-speech tags and names entities, taken
from the English Wall Street Journal portion of the Penn Treebank:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/training-data.json
https://github.com/explosion/spaCy/tree/v2.x/examples/training/training-data.json
```
### Lexical data for vocabulary {#vocab-jsonl new="2"}
@ -619,5 +619,5 @@ data.
Here's an example of the 20 most frequent lexemes in the English training data:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
https://github.com/explosion/spaCy/tree/v2.x/examples/training/vocab-data.jsonl
```

View File

@ -166,13 +166,13 @@ All output files generated by this command are compatible with
### Converter options
| ID | Description |
| ------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `auto` | Automatically pick converter based on file extension and file content (default). |
| `conll`, `conllu`, `conllubio` | Universal Dependencies `.conllu` or `.conll` format. |
| `ner` | NER with IOB/IOB2 tags, one token per line with columns separated by whitespace. The first column is the token and the final column is the IOB tag. Sentences are separated by blank lines and documents are separated by the line `-DOCSTART- -X- O O`. Supports CoNLL 2003 NER format. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
| `iob` | NER with IOB/IOB2 tags, one sentence per line with tokens separated by whitespace and annotation separated by `|`, either `word|B-ENT` or `word|POS|B-ENT`. See [sample data](https://github.com/explosion/spaCy/tree/master/examples/training/ner_example_data). |
| `jsonl` | NER data formatted as JSONL with one dict per line and a `"text"` and `"spans"` key. This is also the format exported by the [Prodigy](https://prodi.gy) annotation tool. See [sample data](https://raw.githubusercontent.com/explosion/projects/master/ner-fashion-brands/fashion_brands_training.jsonl). |
| ID | Description |
| ------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `auto` | Automatically pick converter based on file extension and file content (default). |
| `conll`, `conllu`, `conllubio` | Universal Dependencies `.conllu` or `.conll` format. |
| `ner` | NER with IOB/IOB2 tags, one token per line with columns separated by whitespace. The first column is the token and the final column is the IOB tag. Sentences are separated by blank lines and documents are separated by the line `-DOCSTART- -X- O O`. Supports CoNLL 2003 NER format. See [sample data](https://github.com/explosion/spaCy/tree/v2.x/examples/training/ner_example_data). |
| `iob` | NER with IOB/IOB2 tags, one sentence per line with tokens separated by whitespace and annotation separated by `|`, either `word|B-ENT` or `word|POS|B-ENT`. See [sample data](https://github.com/explosion/spaCy/tree/v2.x/examples/training/ner_example_data). |
| `jsonl` | NER data formatted as JSONL with one dict per line and a `"text"` and `"spans"` key. This is also the format exported by the [Prodigy](https://prodi.gy) annotation tool. See [sample data](https://raw.githubusercontent.com/explosion/projects/master/ner-fashion-brands/fashion_brands_training.jsonl). |
## Debug data {#debug-data new="2.2"}
@ -473,7 +473,7 @@ $ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir]
| `--use-chars`, `-chr` <Tag variant="new">2.2.2</Tag> | flag | Whether to use character-based embedding. |
| `--sa-depth`, `-sa` <Tag variant="new">2.2.2</Tag> | option | Depth of self-attention layers. |
| `--embed-rows`, `-er` | option | Number of embedding rows. |
| `--loss-func`, `-L` | option | Loss function to use for the objective. Either `"cosine"`, `"L2"` or `"characters"`. |
| `--loss-func`, `-L` | option | Loss function to use for the objective. Either `"cosine"`, `"L2"` or `"characters"`. |
| `--dropout`, `-d` | option | Dropout rate. |
| `--batch-size`, `-bs` | option | Number of words per training batch. |
| `--max-length`, `-xw` | option | Maximum words per example. Longer examples are discarded. |

View File

@ -23,12 +23,12 @@ abruptly.
With Cython there are four ways of declaring complex data types. Unfortunately
we use all four in different places, as they all have different utility:
| Declaration | Description | Example |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------- |
| `class` | A normal Python class. | [`Language`](/api/language) |
| `cdef class` | A Python extension type. Differs from a normal Python class in that its attributes can be defined on the underlying struct. Can have C-level objects as attributes (notably structs and pointers), and can have methods which have C-level objects as arguments or return types. | [`Lexeme`](/api/cython-classes#lexeme) |
| `cdef struct` | A struct is just a collection of variables, sort of like a named tuple, except the memory is contiguous. Structs can't have methods, only attributes. | [`LexemeC`](/api/cython-structs#lexemec) |
| `cdef cppclass` | A C++ class. Like a struct, this can be allocated on the stack, but can have methods, a constructor and a destructor. Differs from `cdef class` in that it can be created and destroyed without acquiring the Python global interpreter lock. This style is the most obscure. | [`StateC`](https://github.com/explosion/spaCy/tree/master/spacy/syntax/_state.pxd) |
| Declaration | Description | Example |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- |
| `class` | A normal Python class. | [`Language`](/api/language) |
| `cdef class` | A Python extension type. Differs from a normal Python class in that its attributes can be defined on the underlying struct. Can have C-level objects as attributes (notably structs and pointers), and can have methods which have C-level objects as arguments or return types. | [`Lexeme`](/api/cython-classes#lexeme) |
| `cdef struct` | A struct is just a collection of variables, sort of like a named tuple, except the memory is contiguous. Structs can't have methods, only attributes. | [`LexemeC`](/api/cython-structs#lexemec) |
| `cdef cppclass` | A C++ class. Like a struct, this can be allocated on the stack, but can have methods, a constructor and a destructor. Differs from `cdef class` in that it can be created and destroyed without acquiring the Python global interpreter lock. This style is the most obscure. | [`StateC`](https://github.com/explosion/spaCy/tree/v2.x/spacy/syntax/_state.pxd) |
The most important classes in spaCy are defined as `cdef class` objects. The
underlying data for these objects is usually gathered into a struct, which is

View File

@ -199,15 +199,15 @@ Create a `Span` object from the slice `doc.text[start_idx:end_idx]`. Returns
> assert span.text == "New York"
> ```
| Name | Type | Description |
| ------------------------------------ | ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `start_idx` | int | The index of the first character of the span. |
| `end_idx` | int | The index of the last character after the span. |
| `label` | uint64 / unicode | A label to attach to the span, e.g. for named entities. |
| `kb_id` <Tag variant="new">2.2</Tag> | uint64 / unicode | An ID from a knowledge base to capture the meaning of a named entity. |
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | A meaning representation of the span. |
| `alignment_mode` | `str` | How character indices snap to token boundaries. Options: "strict" (no snapping), "inside" (span of all tokens completely within the character span), "outside" (span of all tokens at least partially covered by the character span). Defaults to "strict". |
| **RETURNS** | `Span` | The newly constructed object or `None`. |
| Name | Type | Description |
| ------------------------------------ | ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `start_idx` | int | The index of the first character of the span. |
| `end_idx` | int | The index of the last character after the span. |
| `label` | uint64 / unicode | A label to attach to the span, e.g. for named entities. |
| `kb_id` <Tag variant="new">2.2</Tag> | uint64 / unicode | An ID from a knowledge base to capture the meaning of a named entity. |
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | A meaning representation of the span. |
| `alignment_mode` | `str` | How character indices snap to token boundaries. Options: "strict" (no snapping), "contract" (span of all tokens completely within the character span), "expand" (span of all tokens at least partially covered by the character span). Defaults to "strict". |
| **RETURNS** | `Span` | The newly constructed object or `None`. |
## Doc.similarity {#similarity tag="method" model="vectors"}

View File

@ -14,7 +14,7 @@ Create a `GoldCorpus`. IF the input data is an iterable, each item should be a
`(text, paragraphs)` tuple, where each paragraph is a tuple
`(sentences, brackets)`, and each sentence is a tuple
`(ids, words, tags, heads, ner)`. See the implementation of
[`gold.read_json_file`](https://github.com/explosion/spaCy/tree/master/spacy/gold.pyx)
[`gold.read_json_file`](https://github.com/explosion/spaCy/tree/v2.x/spacy/gold.pyx)
for further details.
| Name | Type | Description |

View File

@ -156,7 +156,7 @@ The L2 norm of the lexeme's vector representation.
| `like_url` | bool | Does the lexeme resemble a URL? |
| `like_num` | bool | Does the lexeme represent a number? e.g. "10.9", "10", "ten", etc. |
| `like_email` | bool | Does the lexeme resemble an email address? |
| `is_oov` | bool | Does the lexeme have a word vector? |
| `is_oov` | bool | Is the lexeme out-of-vocabulary (i.e. Does it not have a word vector?) |
| `is_stop` | bool | Is the lexeme part of a "stop list"? |
| `lang` | int | Language of the parent vocabulary. |
| `lang_` | unicode | Language of the parent vocabulary. |

View File

@ -459,7 +459,7 @@ The L2 norm of the token's vector representation.
| `like_url` | bool | Does the token resemble a URL? |
| `like_num` | bool | Does the token represent a number? e.g. "10.9", "10", "ten", etc. |
| `like_email` | bool | Does the token resemble an email address? |
| `is_oov` | bool | Does the token have a word vector? |
| `is_oov` | bool | Is the token out-of-vocabulary (i.e. does it not have a word vector?) |
| `is_stop` | bool | Is the token part of a "stop list"? |
| `pos` | int | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). |
| `pos_` | unicode | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). |

View File

@ -107,7 +107,7 @@ meta data as a dictionary instead, you can use the `meta` attribute on your
Get a description for a given POS tag, dependency label or entity type. For a
list of available terms, see
[`glossary.py`](https://github.com/explosion/spaCy/tree/master/spacy/glossary.py).
[`glossary.py`](https://github.com/explosion/spaCy/tree/v2.x/spacy/glossary.py).
> #### Example
>
@ -279,7 +279,7 @@ to add custom labels and their colors automatically.
## Utility functions {#util source="spacy/util.py"}
spaCy comes with a small collection of utility functions located in
[`spacy/util.py`](https://github.com/explosion/spaCy/tree/master/spacy/util.py).
[`spacy/util.py`](https://github.com/explosion/spaCy/tree/v2.x/spacy/util.py).
Because utility functions are mostly intended for **internal use within spaCy**,
their behavior may change with future releases. The functions documented on this
page should be safe to use and we'll try to ensure backwards compatibility.
@ -538,10 +538,10 @@ Compile a sequence of prefix rules into a regex object.
> nlp.tokenizer.prefix_search = prefix_regex.search
> ```
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The prefix rules, e.g. [`lang.punctuation.TOKENIZER_PREFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.prefix_search`](/api/tokenizer#attributes). |
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The prefix rules, e.g. [`lang.punctuation.TOKENIZER_PREFIXES`](https://github.com/explosion/spaCy/tree/v2.x/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.prefix_search`](/api/tokenizer#attributes). |
### util.compile_suffix_regex {#util.compile_suffix_regex tag="function"}
@ -555,10 +555,10 @@ Compile a sequence of suffix rules into a regex object.
> nlp.tokenizer.suffix_search = suffix_regex.search
> ```
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The suffix rules, e.g. [`lang.punctuation.TOKENIZER_SUFFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.suffix_search`](/api/tokenizer#attributes). |
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The suffix rules, e.g. [`lang.punctuation.TOKENIZER_SUFFIXES`](https://github.com/explosion/spaCy/tree/v2.x/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.suffix_search`](/api/tokenizer#attributes). |
### util.compile_infix_regex {#util.compile_infix_regex tag="function"}
@ -572,10 +572,10 @@ Compile a sequence of infix rules into a regex object.
> nlp.tokenizer.infix_finditer = infix_regex.finditer
> ```
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The infix rules, e.g. [`lang.punctuation.TOKENIZER_INFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.infix_finditer`](/api/tokenizer#attributes). |
| Name | Type | Description |
| ----------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `entries` | tuple | The infix rules, e.g. [`lang.punctuation.TOKENIZER_INFIXES`](https://github.com/explosion/spaCy/tree/v2.x/spacy/lang/punctuation.py). |
| **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.infix_finditer`](/api/tokenizer#attributes). |
### util.minibatch {#util.minibatch tag="function" new="2"}

View File

@ -2,7 +2,7 @@ Every language is different and usually full of **exceptions and special
cases**, especially amongst the most common words. Some of these exceptions are
shared across languages, while others are **entirely specific** usually so
specific that they need to be hard-coded. The
[`lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang) module
[`lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang) module
contains all language-specific data, organized in simple Python files. This
makes the data easy to update and extend.
@ -39,21 +39,21 @@ together all components and creating the `Language` subclass for example,
| **Lemmatizer**<br />[`spacy-lookups-data`][spacy-lookups-data] | Lemmatization rules or a lookup-based lemmatization table to assign base forms, for example "be" for "was". |
[stop_words.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/stop_words.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/stop_words.py
[tokenizer_exceptions.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/de/tokenizer_exceptions.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/de/tokenizer_exceptions.py
[norm_exceptions.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/norm_exceptions.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/norm_exceptions.py
[punctuation.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/punctuation.py
[char_classes.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/char_classes.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/char_classes.py
[lex_attrs.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/lex_attrs.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/lex_attrs.py
[syntax_iterators.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/syntax_iterators.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/syntax_iterators.py
[tag_map.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/tag_map.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/tag_map.py
[morph_rules.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/morph_rules.py
https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/morph_rules.py
[spacy-lookups-data]: https://github.com/explosion/spacy-lookups-data

View File

@ -15,8 +15,8 @@ the specific workflows for each component.
>
> To add a new language to spaCy, you'll need to **modify the library's code**.
> The easiest way to do this is to clone the
> [repository](https://github.com/explosion/spaCy/tree/master/) and **build
> spaCy from source**. For more information on this, see the
> [repository](https://github.com/explosion/spacy/tree/v2.x/) and **build spaCy
> from source**. For more information on this, see the
> [installation guide](/usage). Unlike spaCy's core, which is mostly written in
> Cython, all language data is stored in regular Python files. This means that
> you won't have to rebuild anything in between you can simply make edits and
@ -88,7 +88,7 @@ language and training a language model.
> #### Should I ever update the global data?
>
> Reusable language data is collected as atomic pieces in the root of the
> [`spacy.lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang)
> [`spacy.lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang)
> module. Often, when a new language is added, you'll find a pattern or symbol
> that's missing. Even if it isn't common in other languages, it might be best
> to add it to the shared language data, unless it has some conflicting
@ -102,7 +102,7 @@ In order for the tokenizer to split suffixes, prefixes and infixes, spaCy needs
to know the language's character set. If the language you're adding uses
non-latin characters, you might need to define the required character classes in
the global
[`char_classes.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/char_classes.py).
[`char_classes.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/char_classes.py).
For efficiency, spaCy uses hard-coded unicode ranges to define character
classes, the definitions of which can be found on
[Wikipedia](https://en.wikipedia.org/wiki/Unicode_block). If the language
@ -120,7 +120,7 @@ code and resources specific to Spanish are placed into a directory
`spacy/lang/es`, which can be imported as `spacy.lang.es`.
To get started, you can check out the
[existing languages](https://github.com/explosion/spacy/tree/master/spacy/lang).
[existing languages](https://github.com/explosion/spacy/tree/v2.x/spacy/lang).
Here's what the class could look like:
```python
@ -291,14 +291,14 @@ weren't common in the training data, but are equivalent to other words for
example, "realise" and "realize", or "thx" and "thanks".
Similarly, spaCy also includes
[global base norms](https://github.com/explosion/spaCy/tree/master/spacy/lang/norm_exceptions.py)
[global base norms](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/norm_exceptions.py)
for normalizing different styles of quotation marks and currency symbols. Even
though `$` and `€` are very different, spaCy normalizes them both to `$`. This
way, they'll always be seen as similar, no matter how common they were in the
training data.
As of spaCy v2.3, language-specific norm exceptions are provided as a
JSON dictionary in the package
As of spaCy v2.3, language-specific norm exceptions are provided as a JSON
dictionary in the package
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) rather
than in the main library. For a full example, see
[`en_lexeme_norm.json`](https://github.com/explosion/spacy-lookups-data/blob/master/spacy_lookups_data/data/en_lexeme_norm.json).
@ -378,7 +378,7 @@ number words), requires some customization.
> of possible number words).
Here's an example from the English
[`lex_attrs.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/en/lex_attrs.py):
[`lex_attrs.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/lex_attrs.py):
```python
### lex_attrs.py
@ -430,17 +430,17 @@ iterators:
> assert chunks[1].text == "another phrase"
> ```
| Language | Code | Source |
| ---------------- | ---- | ----------------------------------------------------------------------------------------------------------------- |
| English | `en` | [`lang/en/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/en/syntax_iterators.py) |
| German | `de` | [`lang/de/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/de/syntax_iterators.py) |
| French | `fr` | [`lang/fr/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/fr/syntax_iterators.py) |
| Spanish | `es` | [`lang/es/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/es/syntax_iterators.py) |
| Greek | `el` | [`lang/el/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/el/syntax_iterators.py) |
| Norwegian Bokmål | `nb` | [`lang/nb/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/nb/syntax_iterators.py) |
| Swedish | `sv` | [`lang/sv/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/sv/syntax_iterators.py) |
| Indonesian | `id` | [`lang/id/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/id/syntax_iterators.py) |
| Persian | `fa` | [`lang/fa/syntax_iterators.py`](https://github.com/explosion/spaCy/tree/master/spacy/lang/fa/syntax_iterators.py) |
| Language | Code | Source |
| ---------------- | ---- | --------------------------------------------------------------------------------------------------------------- |
| English | `en` | [`lang/en/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/en/syntax_iterators.py) |
| German | `de` | [`lang/de/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/de/syntax_iterators.py) |
| French | `fr` | [`lang/fr/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/fr/syntax_iterators.py) |
| Spanish | `es` | [`lang/es/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/es/syntax_iterators.py) |
| Greek | `el` | [`lang/el/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/el/syntax_iterators.py) |
| Norwegian Bokmål | `nb` | [`lang/nb/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/nb/syntax_iterators.py) |
| Swedish | `sv` | [`lang/sv/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/sv/syntax_iterators.py) |
| Indonesian | `id` | [`lang/id/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/id/syntax_iterators.py) |
| Persian | `fa` | [`lang/fa/syntax_iterators.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/fa/syntax_iterators.py) |
### Lemmatizer {#lemmatizer new="2"}
@ -561,7 +561,7 @@ be causing regressions.
spaCy uses the [pytest framework](https://docs.pytest.org/en/latest/) for
testing. For more details on how the tests are structured and best practices for
writing your own tests, see our
[tests documentation](https://github.com/explosion/spaCy/tree/master/spacy/tests).
[tests documentation](https://github.com/explosion/spacy/tree/v2.x/spacy/tests).
</Infobox>
@ -569,10 +569,10 @@ writing your own tests, see our
It's recommended to always add at least some tests with examples specific to the
language. Language tests should be located in
[`tests/lang`](https://github.com/explosion/spaCy/tree/master/spacy/tests/lang)
in a directory named after the language ID. You'll also need to create a fixture
[`tests/lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/tests/lang) in
a directory named after the language ID. You'll also need to create a fixture
for your tokenizer in the
[`conftest.py`](https://github.com/explosion/spaCy/tree/master/spacy/tests/conftest.py).
[`conftest.py`](https://github.com/explosion/spacy/tree/v2.x/spacy/tests/conftest.py).
Always use the [`get_lang_class`](/api/top-level#util.get_lang_class) helper
function within the fixture, instead of importing the class at the top of the
file. This will load the language data only when it's needed. (Otherwise, _all
@ -585,7 +585,7 @@ def en_tokenizer():
```
When adding test cases, always
[`parametrize`](https://github.com/explosion/spaCy/tree/master/spacy/tests#parameters)
[`parametrize`](https://github.com/explosion/spacy/tree/v2.x/spacy/tests#parameters)
them this will make it easier for others to add more test cases without having
to modify the test itself. You can also add parameter tuples, for example, a
test sentence and its expected length, or a list of expected tokens. Here's an
@ -630,13 +630,13 @@ of using deep learning for NLP with limited labeled data. The vectors are also
useful by themselves they power the `.similarity` methods in spaCy. For best
results, you should pre-process the text with spaCy before training the Word2vec
model. This ensures your tokenization will match. You can use our
[word vectors training script](https://github.com/explosion/spacy/tree/master/bin/train_word_vectors.py),
[word vectors training script](https://github.com/explosion/spacy/tree/v2.x/bin/train_word_vectors.py),
which pre-processes the text with your language-specific tokenizer and trains
the model using [Gensim](https://radimrehurek.com/gensim/). The `vectors.bin`
file should consist of one word and vector per line.
```python
https://github.com/explosion/spacy/tree/master/bin/train_word_vectors.py
https://github.com/explosion/spacy/tree/v2.x/bin/train_word_vectors.py
```
If you don't have a large sample of text available, you can also convert word

View File

@ -17,7 +17,7 @@ This example shows how to use the new [`PhraseMatcher`](/api/phrasematcher) to
efficiently find entities from a large terminology list.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/phrase_matcher.py
https://github.com/explosion/spacy/tree/v2.x/examples/information_extraction/phrase_matcher.py
```
### Extracting entity relations {#entity-relations}
@ -29,7 +29,7 @@ tree to find the noun phrase they are referring to for example:
`"$9.4 million"``"Net income"`.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/entity_relations.py
https://github.com/explosion/spacy/tree/v2.x/examples/information_extraction/entity_relations.py
```
### Navigating the parse tree and subtrees {#subtrees}
@ -38,7 +38,7 @@ This example shows how to navigate the parse tree including subtrees attached to
a word.
```python
https://github.com/explosion/spaCy/tree/master/examples/information_extraction/parse_subtrees.py
https://github.com/explosion/spacy/tree/v2.x/examples/information_extraction/parse_subtrees.py
```
## Pipeline {#pipeline hidden="true"}
@ -51,7 +51,7 @@ entities into one token and sets custom attributes on the `Doc`, `Span` and
`Token`.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_entities.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/custom_component_entities.py
```
### Custom pipeline components and attribute extensions via a REST API {#custom-components-api new="2"}
@ -63,7 +63,7 @@ attributes on the `Doc`, `Span` and `Token` for example, the capital,
latitude/longitude coordinates and the country flag.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_countries_api.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/custom_component_countries_api.py
```
### Custom method extensions {#custom-components-attr-methods new="2"}
@ -72,7 +72,7 @@ A collection of snippets showing examples of extensions adding custom methods to
the `Doc`, `Token` and `Span`.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_attr_methods.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/custom_attr_methods.py
```
### Multi-processing with Joblib {#multi-processing}
@ -85,7 +85,7 @@ IMDB movie reviews dataset and will be loaded automatically via Thinc's built-in
dataset loader.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/multi_processing.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/multi_processing.py
```
## Training {#training hidden="true"}
@ -93,11 +93,11 @@ https://github.com/explosion/spaCy/tree/master/examples/pipeline/multi_processin
### Training spaCy's Named Entity Recognizer {#training-ner}
This example shows how to update spaCy's entity recognizer with your own
examples, starting off with an existing, pretrained model, or from scratch
using a blank `Language` class.
examples, starting off with an existing, pretrained model, or from scratch using
a blank `Language` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_ner.py
```
### Training an additional entity type {#new-entity-type}
@ -108,28 +108,28 @@ examples. In practice, you'll need many more — a few hundred would be a good
start.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_new_entity_type.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_new_entity_type.py
```
### Creating a Knowledge Base for Named Entity Linking {#kb}
This example shows how to create a knowledge base in spaCy,
which is needed to implement entity linking functionality.
It requires as input a spaCy model with pretrained word vectors,
and it stores the KB to file (if an `output_dir` is provided).
This example shows how to create a knowledge base in spaCy, which is needed to
implement entity linking functionality. It requires as input a spaCy model with
pretrained word vectors, and it stores the KB to file (if an `output_dir` is
provided).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/create_kb.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/create_kb.py
```
### Training spaCy's Named Entity Linker {#nel}
This example shows how to train spaCy's entity linker with your own custom
examples, starting off with a predefined knowledge base and its vocab,
and using a blank `English` class.
examples, starting off with a predefined knowledge base and its vocab, and using
a blank `English` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_entity_linker.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_entity_linker.py
```
### Training spaCy's Dependency Parser {#parser}
@ -138,7 +138,7 @@ This example shows how to update spaCy's dependency parser, starting off with an
existing, pretrained model, or from scratch using a blank `Language` class.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_parser.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_parser.py
```
### Training spaCy's Part-of-speech Tagger {#tagger}
@ -148,7 +148,7 @@ map, mapping our own tags to the mapping those tags to the
[Universal Dependencies scheme](http://universaldependencies.github.io/docs/u/pos/index.html).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_tagger.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_tagger.py
```
### Training a custom parser for chat intent semantics {#intent-parser}
@ -162,7 +162,7 @@ following types of relations: `ROOT`, `PLACE`, `QUALITY`, `ATTRIBUTE`, `TIME`
and `LOCATION`.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_intent_parser.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_intent_parser.py
```
### Training spaCy's text classifier {#textcat new="2"}
@ -174,7 +174,7 @@ automatically via Thinc's built-in dataset loader. Predictions are available via
[`Doc.cats`](/api/doc#attributes).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_textcat.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_textcat.py
```
## Vectors {#vectors hidden="true"}
@ -186,7 +186,7 @@ This script lets you load any spaCy model containing word vectors into
[embedding visualization](https://github.com/tensorflow/tensorboard/blob/master/docs/tensorboard_projector_plugin.ipynb).
```python
https://github.com/explosion/spaCy/tree/master/examples/vectors_tensorboard.py
https://github.com/explosion/spacy/tree/v2.x/examples/vectors_tensorboard.py
```
## Deep Learning {#deep-learning hidden="true"}
@ -203,5 +203,5 @@ documents so that they're a fixed size. This hurts review accuracy a lot,
because people often summarize their rating in the final sentence.
```python
https://github.com/explosion/spaCy/tree/master/examples/deep_learning_keras.py
https://github.com/explosion/spacy/tree/v2.x/examples/deep_learning_keras.py
```

View File

@ -13,13 +13,6 @@ spaCy is compatible with **64-bit CPython 2.7 / 3.5+** and runs on
available over [pip](https://pypi.python.org/pypi/spacy) and
[conda](https://anaconda.org/conda-forge/spacy).
> #### 📖 Looking for the old docs?
>
> To help you make the transition from v1.x to v2.0, we've uploaded the old
> website to [**legacy.spacy.io**](https://legacy.spacy.io/docs). Wherever
> possible, the new docs also include notes on features that have changed in
> v2.0, and features that were introduced in the new version.
## Quickstart {hidden="true"}
import QuickstartInstall from 'widgets/quickstart-install.js'
@ -183,7 +176,7 @@ pip install -r requirements.txt
```
Compared to regular install via pip, the
[`requirements.txt`](https://github.com/explosion/spaCy/tree/master/requirements.txt)
[`requirements.txt`](https://github.com/explosion/spacy/tree/v2.x/requirements.txt)
additionally installs developer dependencies such as Cython. See the the
[quickstart widget](#quickstart) to get the right commands for your platform and
Python version.
@ -250,14 +243,14 @@ source code and recompiling frequently.
### Run tests {#run-tests}
spaCy comes with an
[extensive test suite](https://github.com/explosion/spaCy/tree/master/spacy/tests).
[extensive test suite](https://github.com/explosion/spacy/tree/v2.x/spacy/tests).
In order to run the tests, you'll usually want to clone the
[repository](https://github.com/explosion/spaCy/tree/master/) and
[repository](https://github.com/explosion/spacy/tree/v2.x/) and
[build spaCy from source](#source). This will also install the required
development dependencies and test utilities defined in the `requirements.txt`.
Alternatively, you can run `pytest` on the tests packaged with the install
`spacy package. Don't forget to also install the test utilities via spaCy's [`requirements.txt`](https://github.com/explosion/spaCy/tree/master/requirements.txt):
`spacy package. Don't forget to also install the test utilities via spaCy's [`requirements.txt`](https://github.com/explosion/spacy/tree/v2.x/requirements.txt):
```bash
pip install -r requirements.txt

View File

@ -540,7 +540,7 @@ gold = GoldParse(doc, entities=["U-ANIMAL", "O", "O", "O"])
For more details on **training and updating** the named entity recognizer, see
the usage guides on [training](/usage/training) or check out the runnable
[training script](https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py)
[training script](https://github.com/explosion/spacy/tree/v2.x/examples/training/train_ner.py)
on GitHub.
</Infobox>
@ -646,7 +646,7 @@ import Tokenization101 from 'usage/101/\_tokenization.md'
**Global** and **language-specific** tokenizer data is supplied via the language
data in
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang). The
[`spacy/lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang). The
tokenizer exceptions define special cases like "don't" in English, which needs
to be split into two tokens: `{ORTH: "do"}` and `{ORTH: "n't", NORM: "not"}`.
The prefixes, suffixes and infixes mostly define punctuation rules for
@ -666,7 +666,7 @@ For more details on the language-specific data, see the usage guide on
Tokenization rules that are specific to one language, but can be **generalized
across that language** should ideally live in the language data in
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang)  we
[`spacy/lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang)  we
always appreciate pull requests! Anything that's specific to a domain or text
type like financial trading abbreviations, or Bavarian youth slang should be
added as a special case rule to your tokenizer instance. If you're dealing with

View File

@ -78,7 +78,7 @@ As of v2.0, spaCy supports models trained on more than one language. This is
especially useful for named entity recognition. The language ID used for
multi-language or language-neutral models is `xx`. The language class, a generic
subclass containing only the base language data, can be found in
[`lang/xx`](https://github.com/explosion/spaCy/tree/master/spacy/lang/xx).
[`lang/xx`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang/xx).
To load your model with the neutral, multi-language class, simply set
`"language": "xx"` in your [model package](/usage/training#models-generating)'s

View File

@ -489,7 +489,7 @@ When you call `nlp` on a text, the custom pipeline component is applied to the
`Doc`.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_entities.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/custom_component_entities.py
```
Wrapping this functionality in a pipeline component allows you to reuse the
@ -650,7 +650,7 @@ attributes on the `Doc`, `Span` and `Token` for example, the capital,
latitude/longitude coordinates and even the country flag.
```python
https://github.com/explosion/spaCy/tree/master/examples/pipeline/custom_component_countries_api.py
https://github.com/explosion/spacy/tree/v2.x/examples/pipeline/custom_component_countries_api.py
```
In this case, all data can be fetched on initialization in one request. However,

View File

@ -193,7 +193,7 @@ computed properties can't be accessed.
The uppercase attribute names like `LOWER` or `IS_PUNCT` refer to symbols from
the
[`spacy.attrs`](https://github.com/explosion/spaCy/tree/master/spacy/attrs.pyx)
[`spacy.attrs`](https://github.com/explosion/spacy/tree/v2.x/spacy/attrs.pyx)
enum table. They're passed into a function that essentially is a big case/switch
statement, to figure out which struct field to return. The same attribute
identifiers are used in [`Doc.to_array`](/api/doc#to_array), and a few other

View File

@ -194,7 +194,7 @@ add to that data and saves and loads the data to and from a JSON file.
>
> To see custom serialization methods in action, check out the new
> [`EntityRuler`](/api/entityruler) component and its
> [source](https://github.com/explosion/spaCy/tree/master/spacy/pipeline/entityruler.py).
> [source](https://github.com/explosion/spacy/tree/v2.x/spacy/pipeline/entityruler.py).
> Patterns added to the component will be saved to a `.jsonl` file if the
> pipeline is serialized to disk, and to a bytestring if the pipeline is
> serialized to bytes. This allows saving out a model with a rule-based entity

View File

@ -959,7 +959,7 @@ regressions to the parts of the library that you care about the most.
**For more details on the types of contributions we're looking for, the code
conventions and other useful tips, make sure to check out the
[contributing guidelines](https://github.com/explosion/spaCy/tree/master/CONTRIBUTING.md).**
[contributing guidelines](https://github.com/explosion/spacy/tree/v2.x/CONTRIBUTING.md).**
<Infobox title="Code of Conduct" variant="warning">

View File

@ -352,7 +352,7 @@ a blank `Language` class. To do this, you'll need **example texts** and the
**character offsets** and **labels** of each entity contained in the texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_ner.py
```
#### Step by step guide {#step-by-step-ner}
@ -384,7 +384,7 @@ entity recognizer over unlabelled sentences, and adding their annotations to the
training set.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_new_entity_type.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_new_entity_type.py
```
<Infobox title="Important note" variant="warning">
@ -426,7 +426,7 @@ the respective **heads** and **dependency label** for each token of the example
texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_parser.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_parser.py
```
#### Step by step guide {#step-by-step-parser}
@ -460,7 +460,7 @@ those tags to the
[Universal Dependencies scheme](http://universaldependencies.github.io/docs/u/pos/index.html).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_tagger.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_tagger.py
```
#### Step by step guide {#step-by-step-tagger}
@ -528,7 +528,7 @@ message semantics will have the following types of relations: `ROOT`, `PLACE`,
`QUALITY`, `ATTRIBUTE`, `TIME` and `LOCATION`.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_intent_parser.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_intent_parser.py
```
#### Step by step guide {#step-by-step-parser-custom}
@ -567,7 +567,7 @@ automatically via Thinc's built-in dataset loader. Predictions are available via
[`Doc.cats`](/api/doc#attributes).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_textcat.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_textcat.py
```
#### Step by step guide {#step-by-step-textcat}
@ -614,7 +614,7 @@ pretrained word vectors to obtain an encoding of an entity's description as its
vector.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/create_kb.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/create_kb.py
```
#### Step by step guide {#step-by-step-kb}
@ -639,7 +639,7 @@ offsets** and **knowledge base identifiers** of each entity contained in the
texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_entity_linker.py
https://github.com/explosion/spacy/tree/v2.x/examples/training/train_entity_linker.py
```
#### Step by step guide {#step-by-step-entity-linker}

View File

@ -180,7 +180,7 @@ entirely **in Markdown**, without having to compromise on easy-to-use custom UI
components. We're hoping that the Markdown source will make it even easier to
contribute to the documentation. For more details, check out the
[styleguide](/styleguide) and
[source](https://github.com/explosion/spaCy/tree/master/website). While
[source](https://github.com/explosion/spacy/tree/v2.x/website). While
converting the pages to Markdown, we've also fixed a bunch of typos, improved
the existing pages and added some new content:

View File

@ -161,8 +161,8 @@ debugging your tokenizer configuration.
spaCy's custom warnings have been replaced with native Python
[`warnings`](https://docs.python.org/3/library/warnings.html). Instead of
setting `SPACY_WARNING_IGNORE`, use the [`warnings`
filters](https://docs.python.org/3/library/warnings.html#the-warnings-filter)
setting `SPACY_WARNING_IGNORE`, use the
[`warnings` filters](https://docs.python.org/3/library/warnings.html#the-warnings-filter)
to manage warnings.
```diff
@ -176,7 +176,7 @@ import spacy
#### Normalization tables
The normalization tables have moved from the language data in
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang) to the
[`spacy/lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang) to the
package [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data).
If you're adding data for a new language, the normalization table should be
added to `spacy-lookups-data`. See
@ -190,8 +190,8 @@ lexemes will be added to the vocab automatically, just as in small models
without vectors.
To see the number of unique vectors and number of words with vectors, see
`nlp.meta['vectors']`, for example for `en_core_web_md` there are `20000`
unique vectors and `684830` words with vectors:
`nlp.meta['vectors']`, for example for `en_core_web_md` there are `20000` unique
vectors and `684830` words with vectors:
```python
{
@ -210,8 +210,8 @@ for orth in nlp.vocab.vectors:
_ = nlp.vocab[orth]
```
If your workflow previously iterated over `nlp.vocab`, a similar alternative
is to iterate over words with vectors instead:
If your workflow previously iterated over `nlp.vocab`, a similar alternative is
to iterate over words with vectors instead:
```diff
- lexemes = [w for w in nlp.vocab]
@ -220,9 +220,9 @@ is to iterate over words with vectors instead:
Be aware that the set of preloaded lexemes in a v2.2 model is not equivalent to
the set of words with vectors. For English, v2.2 `md/lg` models have 1.3M
provided lexemes but only 685K words with vectors. The vectors have been
updated for most languages in v2.2, but the English models contain the same
vectors for both v2.2 and v2.3.
provided lexemes but only 685K words with vectors. The vectors have been updated
for most languages in v2.2, but the English models contain the same vectors for
both v2.2 and v2.3.
#### Lexeme.is_oov and Token.is_oov
@ -234,8 +234,7 @@ fixed in the next patch release v2.3.1.
</Infobox>
In v2.3, `Lexeme.is_oov` and `Token.is_oov` are `True` if the lexeme does not
have a word vector. This is equivalent to `token.orth not in
nlp.vocab.vectors`.
have a word vector. This is equivalent to `token.orth not in nlp.vocab.vectors`.
Previously in v2.2, `is_oov` corresponded to whether a lexeme had stored
probability and cluster features. The probability and cluster features are no
@ -270,8 +269,8 @@ as part of the model vocab.
To load the probability table into a provided model, first make sure you have
`spacy-lookups-data` installed. To load the table, remove the empty provided
`lexeme_prob` table and then access `Lexeme.prob` for any word to load the
table from `spacy-lookups-data`:
`lexeme_prob` table and then access `Lexeme.prob` for any word to load the table
from `spacy-lookups-data`:
```diff
+ # prerequisite: pip install spacy-lookups-data
@ -321,9 +320,9 @@ the [train CLI](/api/cli#train), you can use the new `--tag-map-path` option to
provide in the tag map as a JSON dict.
If you want to export a tag map from a provided model for use with the train
CLI, you can save it as a JSON dict. To only use string keys as required by
JSON and to make it easier to read and edit, any internal integer IDs need to
be converted back to strings:
CLI, you can save it as a JSON dict. To only use string keys as required by JSON
and to make it easier to read and edit, any internal integer IDs need to be
converted back to strings:
```python
import spacy

View File

@ -306,7 +306,7 @@ lookup-based lemmatization and **many new languages**!
<Infobox>
**API:** [`Language`](/api/language) **Code:**
[`spacy/lang`](https://github.com/explosion/spaCy/tree/master/spacy/lang)
[`spacy/lang`](https://github.com/explosion/spacy/tree/v2.x/spacy/lang)
**Usage:** [Adding languages](/usage/adding-languages)
</Infobox>

View File

@ -14,10 +14,12 @@ const models = require('./meta/languages.json')
const universe = require('./meta/universe.json')
const DEFAULT_TEMPLATE = path.resolve('./src/templates/index.js')
const legacy = site.legacy || !!+process.env.SPACY_LEGACY
module.exports = {
siteMetadata: {
...site,
legacy,
...logos,
sidebars,
...models,
@ -127,7 +129,7 @@ module.exports = {
background_color: site.theme,
theme_color: site.theme,
display: `minimal-ui`,
icon: `src/images/icon.png`,
icon: legacy ? `src/images/icon_legacy.png` : `src/images/icon.png`,
},
},
{
@ -136,6 +138,26 @@ module.exports = {
domain: site.domain,
},
},
{
resolve: 'gatsby-plugin-robots-txt',
options: {
host: site.siteUrl,
sitemap: `${site.siteUrl}/sitemap.xml`,
// If we're in a special state prevent indexing
resolveEnv: () => (legacy ? 'development' : 'production'),
env: {
production: {
policy: [{ userAgent: '*', allow: '/' }],
},
development: {
policy: [
{ userAgent: '*', disallow: ['/'] },
{ userAgent: 'Twitterbot', allow: '/' },
],
},
},
},
},
`gatsby-plugin-offline`,
],
}

View File

@ -154,6 +154,12 @@
{ "code": "fa", "name": "Persian", "has_examples": true },
{ "code": "ur", "name": "Urdu", "example": "یہ ایک جملہ ہے", "has_examples": true },
{ "code": "tt", "name": "Tatar", "has_examples": true },
{
"code": "ky",
"name": "Kyrgyz",
"example": "Адамга эң кыйыны — күн сайын адам болуу",
"has_examples": true
},
{ "code": "te", "name": "Telugu", "example": "ఇది ఒక వాక్యం.", "has_examples": true },
{ "code": "si", "name": "Sinhala", "example": "මෙය වාක්‍යයකි.", "has_examples": true },
{ "code": "ga", "name": "Irish" },

View File

@ -2,8 +2,10 @@
"title": "spaCy",
"description": "spaCy is a free open-source library for Natural Language Processing in Python. It features NER, POS tagging, dependency parsing, word vectors and more.",
"slogan": "Industrial-strength Natural Language Processing in Python",
"siteUrl": "https://spacy.io",
"domain": "spacy.io",
"siteUrl": "https://v2.spacy.io",
"domain": "v2.spacy.io",
"legacy": false,
"codeBranch": "v2.x",
"email": "contact@explosion.ai",
"company": "Explosion AI",
"companyUrl": "https://explosion.ai",
@ -24,8 +26,8 @@
"indexName": "spacy"
},
"binderUrl": "explosion/spacy-io-binder",
"binderBranch": "live",
"binderVersion": "2.3.0",
"binderBranch": "v2.spacy.io",
"binderVersion": "2.3.5",
"sections": [
{ "id": "usage", "title": "Usage Documentation", "theme": "blue" },
{ "id": "models", "title": "Models Documentation", "theme": "blue" },

View File

@ -3437,6 +3437,11 @@
"resolved": "https://registry.npmjs.org/@types/minimatch/-/minimatch-3.0.3.tgz",
"integrity": "sha512-tHq6qdbT9U1IRSGf14CL0pUlULksvY9OZ+5eEgl1N7t+OA3tGvNpxJCzuKQlsNgCVwbAs670L1vcVQi8j9HjnA=="
},
"@types/minimist": {
"version": "1.2.1",
"resolved": "https://registry.npmjs.org/@types/minimist/-/minimist-1.2.1.tgz",
"integrity": "sha512-fZQQafSREFyuZcdWFAExYjBiCL7AUCdgsk80iO0q4yihYYdcIiH28CcuPTGFgLOCC8RlW49GSQxdHwZP+I7CNg=="
},
"@types/mkdirp": {
"version": "0.5.2",
"resolved": "https://registry.npmjs.org/@types/mkdirp/-/mkdirp-0.5.2.tgz",
@ -3479,6 +3484,11 @@
}
}
},
"@types/normalize-package-data": {
"version": "2.4.0",
"resolved": "https://registry.npmjs.org/@types/normalize-package-data/-/normalize-package-data-2.4.0.tgz",
"integrity": "sha512-f5j5b/Gf71L+dbqxIpQ4Z2WlmI/mPJ0fOkGGmFgtb6sAu97EPczzbS3/tJKxmcYDj55OX6ssqwDAWOHIYDRDGA=="
},
"@types/parse-json": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/@types/parse-json/-/parse-json-4.0.0.tgz",
@ -4500,6 +4510,11 @@
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha1-x57Zf380y48robyXkLzDZkdLS3k="
},
"at-least-node": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/at-least-node/-/at-least-node-1.0.0.tgz",
"integrity": "sha512-+q/t7Ekv1EDY2l6Gda6LLiX14rU9TV20Wa3ofeQmwPFZbOMo9DXrLbOjFaaclkXKWidIaopwAObQDqwWtGUjqg=="
},
"atob": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/atob/-/atob-2.1.2.tgz",
@ -8700,16 +8715,6 @@
"logalot": "^2.1.0"
}
},
"cyclist": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/cyclist/-/cyclist-1.0.1.tgz",
"integrity": "sha1-WW6WmP0MgOEgOMK4LW6xs1tiJNk="
},
"damerau-levenshtein": {
"version": "1.0.6",
"resolved": "https://registry.npmjs.org/damerau-levenshtein/-/damerau-levenshtein-1.0.6.tgz",
"integrity": "sha512-JVrozIeElnj3QzfUIt8tB8YMluBJom4Vw9qTPpjGYQ9fYlB3D/rb6OordUxf3xeFB35LKWs0xqcO5U6ySvBtug=="
},
"dashdash": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/dashdash/-/dashdash-1.14.1.tgz",
@ -8729,9 +8734,9 @@
"integrity": "sha512-sAJVKx/FqrLYHAQeN7VpJrPhagZc9R4ImZIWYRFZaaohR3KzmuK88touwsSwSVT8Qcbd4zoDsnGfX4GFB4imyQ=="
},
"debug": {
"version": "3.2.7",
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.7.tgz",
"integrity": "sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==",
"version": "3.2.6",
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.6.tgz",
"integrity": "sha512-mel+jf7nrtEl5Pn1Qx46zARXKDpBbvzezse7p7LqINmdoIk8PYP5SySaxEmYv6TZ0JyEKA1hsCId6DIhgITtWQ==",
"requires": {
"ms": "^2.1.1"
}
@ -8741,6 +8746,15 @@
"resolved": "https://registry.npmjs.org/decamelize/-/decamelize-1.2.0.tgz",
"integrity": "sha1-9lNNFRSCabIDUue+4m9QH5oZEpA="
},
"decamelize-keys": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/decamelize-keys/-/decamelize-keys-1.1.0.tgz",
"integrity": "sha1-0XGoeTMlKAfrPLYdwcFEXQeN8tk=",
"requires": {
"decamelize": "^1.1.0",
"map-obj": "^1.0.0"
}
},
"decode-uri-component": {
"version": "0.2.0",
"resolved": "https://registry.npmjs.org/decode-uri-component/-/decode-uri-component-0.2.0.tgz",
@ -10178,6 +10192,11 @@
"regenerator-runtime": "^0.13.4"
}
},
"damerau-levenshtein": {
"version": "1.0.6",
"resolved": "https://registry.npmjs.org/damerau-levenshtein/-/damerau-levenshtein-1.0.6.tgz",
"integrity": "sha512-JVrozIeElnj3QzfUIt8tB8YMluBJom4Vw9qTPpjGYQ9fYlB3D/rb6OordUxf3xeFB35LKWs0xqcO5U6ySvBtug=="
},
"emoji-regex": {
"version": "9.2.0",
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-9.2.0.tgz",
@ -13091,6 +13110,30 @@
"svg-react-loader": "^0.4.4"
}
},
"gatsby-plugin-robots-txt": {
"version": "1.5.5",
"resolved": "https://registry.npmjs.org/gatsby-plugin-robots-txt/-/gatsby-plugin-robots-txt-1.5.5.tgz",
"integrity": "sha512-wLIep04R0cnY+3t9uFVFitA/eLbI6o8xkrUPg6gVxnas/LtzMe5tUiMK5P+idC14B0ohY1y2zl2hP+Bu54/dHQ==",
"requires": {
"@babel/runtime": "^7.11.2",
"generate-robotstxt": "^8.0.3"
},
"dependencies": {
"@babel/runtime": {
"version": "7.12.5",
"resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.12.5.tgz",
"integrity": "sha512-plcc+hbExy3McchJCEQG3knOsuh3HH+Prx1P6cLIkET/0dLuQDEnrT+s27Axgc9bqfsmNUNHfscgMUdBpC9xfg==",
"requires": {
"regenerator-runtime": "^0.13.4"
}
},
"regenerator-runtime": {
"version": "0.13.7",
"resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.13.7.tgz",
"integrity": "sha512-a54FxoJDIr27pgf7IgeQGxmqUNYrcV338lf/6gH456HZ/PhX+5BcwHXG9ajESmwe6WRO0tAzRUrRmNONWgkrew=="
}
}
},
"gatsby-plugin-sass": {
"version": "2.0.10",
"resolved": "https://registry.npmjs.org/gatsby-plugin-sass/-/gatsby-plugin-sass-2.0.10.tgz",
@ -14758,6 +14801,234 @@
"globule": "^1.0.0"
}
},
"generate-robotstxt": {
"version": "8.0.3",
"resolved": "https://registry.npmjs.org/generate-robotstxt/-/generate-robotstxt-8.0.3.tgz",
"integrity": "sha512-iD//oAVKcHOCz9M0IiT3pyUiF2uN1qvL3qaTA8RGLz7NU7l0XVwyzd3rN+tzhB657DNUgrygXt9w8+0zkTMFrg==",
"requires": {
"cosmiconfig": "^6.0.0",
"fs-extra": "^9.0.0",
"ip-regex": "^4.1.0",
"is-absolute-url": "^3.0.3",
"meow": "^7.0.1",
"resolve-from": "^5.0.0"
},
"dependencies": {
"camelcase-keys": {
"version": "6.2.2",
"resolved": "https://registry.npmjs.org/camelcase-keys/-/camelcase-keys-6.2.2.tgz",
"integrity": "sha512-YrwaA0vEKazPBkn0ipTiMpSajYDSe+KjQfrjhcBMxJt/znbvlHd8Pw/Vamaz5EB4Wfhs3SUR3Z9mwRu/P3s3Yg==",
"requires": {
"camelcase": "^5.3.1",
"map-obj": "^4.0.0",
"quick-lru": "^4.0.1"
}
},
"cosmiconfig": {
"version": "6.0.0",
"resolved": "https://registry.npmjs.org/cosmiconfig/-/cosmiconfig-6.0.0.tgz",
"integrity": "sha512-xb3ZL6+L8b9JLLCx3ZdoZy4+2ECphCMo2PwqgP1tlfVq6M6YReyzBJtvWWtbDSpNr9hn96pkCiZqUcFEc+54Qg==",
"requires": {
"@types/parse-json": "^4.0.0",
"import-fresh": "^3.1.0",
"parse-json": "^5.0.0",
"path-type": "^4.0.0",
"yaml": "^1.7.2"
}
},
"fs-extra": {
"version": "9.1.0",
"resolved": "https://registry.npmjs.org/fs-extra/-/fs-extra-9.1.0.tgz",
"integrity": "sha512-hcg3ZmepS30/7BSFqRvoo3DOMQu7IjqxO5nCDt+zM9XWjb33Wg7ziNT+Qvqbuc3+gWpzO02JubVyk2G4Zvo1OQ==",
"requires": {
"at-least-node": "^1.0.0",
"graceful-fs": "^4.2.0",
"jsonfile": "^6.0.1",
"universalify": "^2.0.0"
}
},
"graceful-fs": {
"version": "4.2.4",
"resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.4.tgz",
"integrity": "sha512-WjKPNJF79dtJAVniUlGGWHYGz2jWxT6VhN/4m1NdkbZ2nOsEF+cI1Edgql5zCRhs/VsQYRvrXctxktVXZUkixw=="
},
"import-fresh": {
"version": "3.3.0",
"resolved": "https://registry.npmjs.org/import-fresh/-/import-fresh-3.3.0.tgz",
"integrity": "sha512-veYYhQa+D1QBKznvhUHxb8faxlrwUnxseDAbAp457E0wLNio2bOSKnjYDhMj+YiAq61xrMGhQk9iXVk5FzgQMw==",
"requires": {
"parent-module": "^1.0.0",
"resolve-from": "^4.0.0"
},
"dependencies": {
"resolve-from": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-4.0.0.tgz",
"integrity": "sha512-pb/MYmXstAkysRFx8piNI1tGFNQIFA3vkE3Gq4EuA1dF6gHp/+vgZqsCGJapvy8N3Q+4o7FwvquPJcnZ7RYy4g=="
}
}
},
"indent-string": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/indent-string/-/indent-string-4.0.0.tgz",
"integrity": "sha512-EdDDZu4A2OyIK7Lr/2zG+w5jmbuk1DVBnEwREQvBzspBJkCEbRa8GxU1lghYcaGJCnRWibjDXlq779X1/y5xwg=="
},
"ip-regex": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ip-regex/-/ip-regex-4.3.0.tgz",
"integrity": "sha512-B9ZWJxHHOHUhUjCPrMpLD4xEq35bUTClHM1S6CBU5ixQnkZmwipwgc96vAd7AAGM9TGHvJR+Uss+/Ak6UphK+Q=="
},
"is-absolute-url": {
"version": "3.0.3",
"resolved": "https://registry.npmjs.org/is-absolute-url/-/is-absolute-url-3.0.3.tgz",
"integrity": "sha512-opmNIX7uFnS96NtPmhWQgQx6/NYFgsUXYMllcfzwWKUMwfo8kku1TvE6hkNcH+Q1ts5cMVrsY7j0bxXQDciu9Q=="
},
"jsonfile": {
"version": "6.1.0",
"resolved": "https://registry.npmjs.org/jsonfile/-/jsonfile-6.1.0.tgz",
"integrity": "sha512-5dgndWOriYSm5cnYaJNhalLNDKOqFwyDB/rr1E9ZsGciGvKPs8R2xYGCacuf3z6K1YKDz182fd+fY3cn3pMqXQ==",
"requires": {
"graceful-fs": "^4.1.6",
"universalify": "^2.0.0"
}
},
"map-obj": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/map-obj/-/map-obj-4.1.0.tgz",
"integrity": "sha512-glc9y00wgtwcDmp7GaE/0b0OnxpNJsVf3ael/An6Fe2Q51LLwN1er6sdomLRzz5h0+yMpiYLhWYF5R7HeqVd4g=="
},
"meow": {
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/meow/-/meow-7.1.1.tgz",
"integrity": "sha512-GWHvA5QOcS412WCo8vwKDlTelGLsCGBVevQB5Kva961rmNfun0PCbv5+xta2kUMFJyR8/oWnn7ddeKdosbAPbA==",
"requires": {
"@types/minimist": "^1.2.0",
"camelcase-keys": "^6.2.2",
"decamelize-keys": "^1.1.0",
"hard-rejection": "^2.1.0",
"minimist-options": "4.1.0",
"normalize-package-data": "^2.5.0",
"read-pkg-up": "^7.0.1",
"redent": "^3.0.0",
"trim-newlines": "^3.0.0",
"type-fest": "^0.13.1",
"yargs-parser": "^18.1.3"
}
},
"normalize-package-data": {
"version": "2.5.0",
"resolved": "https://registry.npmjs.org/normalize-package-data/-/normalize-package-data-2.5.0.tgz",
"integrity": "sha512-/5CMN3T0R4XTj4DcGaexo+roZSdSFW/0AOOTROrjxzCG1wrWXEsGbRKevjlIL+ZDE4sZlJr5ED4YW0yqmkK+eA==",
"requires": {
"hosted-git-info": "^2.1.4",
"resolve": "^1.10.0",
"semver": "2 || 3 || 4 || 5",
"validate-npm-package-license": "^3.0.1"
}
},
"parse-json": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/parse-json/-/parse-json-5.2.0.tgz",
"integrity": "sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg==",
"requires": {
"@babel/code-frame": "^7.0.0",
"error-ex": "^1.3.1",
"json-parse-even-better-errors": "^2.3.0",
"lines-and-columns": "^1.1.6"
}
},
"read-pkg": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/read-pkg/-/read-pkg-5.2.0.tgz",
"integrity": "sha512-Ug69mNOpfvKDAc2Q8DRpMjjzdtrnv9HcSMX+4VsZxD1aZ6ZzrIE7rlzXBtWTyhULSMKg076AW6WR5iZpD0JiOg==",
"requires": {
"@types/normalize-package-data": "^2.4.0",
"normalize-package-data": "^2.5.0",
"parse-json": "^5.0.0",
"type-fest": "^0.6.0"
},
"dependencies": {
"type-fest": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.6.0.tgz",
"integrity": "sha512-q+MB8nYR1KDLrgr4G5yemftpMC7/QLqVndBmEEdqzmNj5dcFOO4Oo8qlwZE3ULT3+Zim1F8Kq4cBnikNhlCMlg=="
}
}
},
"read-pkg-up": {
"version": "7.0.1",
"resolved": "https://registry.npmjs.org/read-pkg-up/-/read-pkg-up-7.0.1.tgz",
"integrity": "sha512-zK0TB7Xd6JpCLmlLmufqykGE+/TlOePD6qKClNW7hHDKFh/J7/7gCWGR7joEQEW1bKq3a3yUZSObOoWLFQ4ohg==",
"requires": {
"find-up": "^4.1.0",
"read-pkg": "^5.2.0",
"type-fest": "^0.8.1"
},
"dependencies": {
"type-fest": {
"version": "0.8.1",
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.8.1.tgz",
"integrity": "sha512-4dbzIzqvjtgiM5rw1k5rEHtBANKmdudhGyBEajN01fEyhaAIhsoKNy6y7+IN93IfpFtwY9iqi7kD+xwKhQsNJA=="
}
}
},
"redent": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/redent/-/redent-3.0.0.tgz",
"integrity": "sha512-6tDA8g98We0zd0GvVeMT9arEOnTw9qM03L9cJXaCjrip1OO764RDBLBfrB4cwzNGDj5OA5ioymC9GkizgWJDUg==",
"requires": {
"indent-string": "^4.0.0",
"strip-indent": "^3.0.0"
}
},
"resolve": {
"version": "1.19.0",
"resolved": "https://registry.npmjs.org/resolve/-/resolve-1.19.0.tgz",
"integrity": "sha512-rArEXAgsBG4UgRGcynxWIWKFvh/XZCcS8UJdHhwy91zwAvCZIbcs+vAbflgBnNjYMs/i/i+/Ux6IZhML1yPvxg==",
"requires": {
"is-core-module": "^2.1.0",
"path-parse": "^1.0.6"
}
},
"resolve-from": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-5.0.0.tgz",
"integrity": "sha512-qYg9KP24dD5qka9J47d0aVky0N+b4fTU89LN9iDnjB5waksiC49rvMB0PrUJQGoTmH50XPiqOvAjDfaijGxYZw=="
},
"strip-indent": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/strip-indent/-/strip-indent-3.0.0.tgz",
"integrity": "sha512-laJTa3Jb+VQpaC6DseHhF7dXVqHTfJPCRDaEbid/drOhgitgYku/letMUqOXFoWV0zIIUbjpdH2t+tYj4bQMRQ==",
"requires": {
"min-indent": "^1.0.0"
}
},
"trim-newlines": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/trim-newlines/-/trim-newlines-3.0.0.tgz",
"integrity": "sha512-C4+gOpvmxaSMKuEf9Qc134F1ZuOHVXKRbtEflf4NTtuuJDEIJ9p5PXsalL8SkeRw+qit1Mo+yuvMPAKwWg/1hA=="
},
"type-fest": {
"version": "0.13.1",
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.13.1.tgz",
"integrity": "sha512-34R7HTnG0XIJcBSn5XhDd7nNFPRcXYRZrBB2O2jdKqYODldSzBAqzsWoZYYvduky73toYS/ESqxPvkDf/F0XMg=="
},
"universalify": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/universalify/-/universalify-2.0.0.tgz",
"integrity": "sha512-hAZsKq7Yy11Zu1DE0OzWjw7nnLZmJZYTDZZyEFHZdUhV8FkH5MCfoU1XMaxXovpyW5nq5scPqq0ZDP9Zyl04oQ=="
},
"yargs-parser": {
"version": "18.1.3",
"resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-18.1.3.tgz",
"integrity": "sha512-o50j0JeToy/4K6OZcaQmW6lyXXKhq7csREXcDwk2omFPJEwUNOVtJKvmDr9EI1fAJZUyZcRF7kxGBWmRXudrCQ==",
"requires": {
"camelcase": "^5.0.0",
"decamelize": "^1.2.0"
}
}
}
},
"gensync": {
"version": "1.0.0-beta.2",
"resolved": "https://registry.npmjs.org/gensync/-/gensync-1.0.0-beta.2.tgz",
@ -15371,6 +15642,11 @@
}
}
},
"hard-rejection": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/hard-rejection/-/hard-rejection-2.1.0.tgz",
"integrity": "sha512-VIZB+ibDhx7ObhAe7OVtoEbuP4h/MuOTHJ+J8h/eBXotJYl0fBgR72xDFCKgIh22OJZIOVNxBMWuhAr10r8HdA=="
},
"has": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
@ -18345,6 +18621,23 @@
"resolved": "http://registry.npmjs.org/minimist/-/minimist-1.2.0.tgz",
"integrity": "sha1-o1AIsg9BOD7sH7kU9M1d95omQoQ="
},
"minimist-options": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/minimist-options/-/minimist-options-4.1.0.tgz",
"integrity": "sha512-Q4r8ghd80yhO/0j1O3B2BjweX3fiHg9cdOwjJd2J76Q135c+NDxGCqdYKQ1SKBuFfgWbAUzBfvYjPUEeNgqN1A==",
"requires": {
"arrify": "^1.0.1",
"is-plain-obj": "^1.1.0",
"kind-of": "^6.0.3"
},
"dependencies": {
"kind-of": {
"version": "6.0.3",
"resolved": "https://registry.npmjs.org/kind-of/-/kind-of-6.0.3.tgz",
"integrity": "sha512-dcS1ul+9tmeD95T+x28/ehLgd9mENa3LsvDTtzm3vyBEO7RPptvAD+t44WVXaUjTBRcrpFeFlC8WCruUR456hw=="
}
}
},
"minipass": {
"version": "2.3.5",
"resolved": "https://registry.npmjs.org/minipass/-/minipass-2.3.5.tgz",
@ -19611,6 +19904,13 @@
"cyclist": "^1.0.1",
"inherits": "^2.0.3",
"readable-stream": "^2.1.5"
},
"dependencies": {
"cyclist": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/cyclist/-/cyclist-1.0.1.tgz",
"integrity": "sha1-WW6WmP0MgOEgOMK4LW6xs1tiJNk="
}
}
},
"param-case": {
@ -22129,9 +22429,14 @@
"resolved": "https://registry.npmjs.org/querystringify/-/querystringify-2.1.0.tgz",
"integrity": "sha512-sluvZZ1YiTLD5jsqZcDmFyV2EwToyXZBfpoVOmktMmW+VEnhgakFHnasVph65fOjGPTWN0Nw3+XQaSeMayr0kg=="
},
"quick-lru": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/quick-lru/-/quick-lru-4.0.1.tgz",
"integrity": "sha512-ARhCpm70fzdcvNQfPoy49IaanKkTlRWF2JMzqhcJbhSFRZv7nPTvZJdcY7301IPmvW+/p0RgIWnQDLJxifsQ7g=="
},
"ramda": {
"version": "0.21.0",
"resolved": "https://registry.npmjs.org/ramda/-/ramda-0.21.0.tgz",
"resolved": "http://registry.npmjs.org/ramda/-/ramda-0.21.0.tgz",
"integrity": "sha1-oAGr7bP/YQd9T/HVd9RN536NCjU="
},
"randombytes": {
@ -24586,6 +24891,11 @@
"kind-of": "^3.2.0"
},
"dependencies": {
"import-lazy": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/import-lazy/-/import-lazy-3.1.0.tgz",
"integrity": "sha512-8/gvXvX2JMn0F+CDlSC4l6kOmVaLOO3XLkksI7CI3Ud95KDYJuYur2b9P/PUt/i/pDAMd/DulQsNbbbmRRsDIQ=="
},
"kind-of": {
"version": "3.2.2",
"resolved": "https://registry.npmjs.org/kind-of/-/kind-of-3.2.2.tgz",
@ -24594,11 +24904,6 @@
"is-buffer": "^1.1.5"
}
},
"import-lazy": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/import-lazy/-/import-lazy-3.1.0.tgz",
"integrity": "sha512-8/gvXvX2JMn0F+CDlSC4l6kOmVaLOO3XLkksI7CI3Ud95KDYJuYur2b9P/PUt/i/pDAMd/DulQsNbbbmRRsDIQ=="
},
"p-cancelable": {
"version": "0.4.1",
"resolved": "http://registry.npmjs.org/p-cancelable/-/p-cancelable-0.4.1.tgz",
@ -24659,6 +24964,13 @@
"integrity": "sha512-pYAIzeRo8J6KPEaJ0VWOh5Pzkbw/RetuzehGM7QRRX5he4fPHx2rdKMB256ehJCkX+XRQm16eZLqLNS8RSZXZw==",
"requires": {
"ms": "^2.1.1"
},
"dependencies": {
"ms": {
"version": "2.1.3",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
"integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA=="
}
}
},
"iconv-lite": {
@ -24715,11 +25027,24 @@
"ms": "^2.1.1"
}
},
"electron-to-chromium": {
"version": "1.3.113",
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.3.113.tgz",
"integrity": "sha512-De+lPAxEcpxvqPTyZAXELNpRZXABRxf+uL/rSykstQhzj/B0l1150G/ExIIxKc16lI89Hgz81J0BHAcbTqK49g=="
},
"isarray": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-2.0.1.tgz",
"integrity": "sha1-o32U7ZzaLVmGXJ92/llu4fM4dB4="
},
"node-releases": {
"version": "1.1.8",
"resolved": "https://registry.npmjs.org/node-releases/-/node-releases-1.1.8.tgz",
"integrity": "sha512-gQm+K9mGCiT/NXHy+V/ZZS1N/LOaGGqRAAJJs3X9Ah1g+CIbRcBgNyoNYQ+SEtcyAtB9KqDruu+fF7nWjsqRaA==",
"requires": {
"semver": "^5.3.0"
}
},
"socket.io-parser": {
"version": "3.3.2",
"resolved": "https://registry.npmjs.org/socket.io-parser/-/socket.io-parser-3.3.2.tgz",
@ -24749,19 +25074,6 @@
"integrity": "sha1-VgiurfwAvmwpAd9fmGF4jeDVl8g="
}
}
},
"electron-to-chromium": {
"version": "1.3.113",
"resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.3.113.tgz",
"integrity": "sha512-De+lPAxEcpxvqPTyZAXELNpRZXABRxf+uL/rSykstQhzj/B0l1150G/ExIIxKc16lI89Hgz81J0BHAcbTqK49g=="
},
"node-releases": {
"version": "1.1.8",
"resolved": "https://registry.npmjs.org/node-releases/-/node-releases-1.1.8.tgz",
"integrity": "sha512-gQm+K9mGCiT/NXHy+V/ZZS1N/LOaGGqRAAJJs3X9Ah1g+CIbRcBgNyoNYQ+SEtcyAtB9KqDruu+fF7nWjsqRaA==",
"requires": {
"semver": "^5.3.0"
}
}
}
},
@ -25352,6 +25664,11 @@
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-3.0.0.tgz",
"integrity": "sha1-7QMXwyIGT3lGbAKWa922Bas32Zg="
},
"normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
"integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA=="
},
"strip-ansi": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-4.0.0.tgz",
@ -25359,11 +25676,6 @@
"requires": {
"ansi-regex": "^3.0.0"
}
},
"normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
"integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA=="
}
}
},
@ -25704,7 +26016,7 @@
},
"json5": {
"version": "0.5.1",
"resolved": "https://registry.npmjs.org/json5/-/json5-0.5.1.tgz",
"resolved": "http://registry.npmjs.org/json5/-/json5-0.5.1.tgz",
"integrity": "sha1-Hq3nrMASA0rYTiOWdn6tn6VJWCE="
},
"loader-utils": {
@ -25896,6 +26208,15 @@
"tar-stream": "^1.1.2"
},
"dependencies": {
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"pump": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/pump/-/pump-1.0.3.tgz",
@ -25905,16 +26226,6 @@
"once": "^1.3.1"
}
},
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"chalk": "^2.4.2",
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
@ -25930,209 +26241,6 @@
}
}
},
"cssnano-util-same-parent": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/cssnano-util-same-parent/-/cssnano-util-same-parent-4.0.1.tgz",
"integrity": "sha512-WcKx5OY+KoSIAxBW6UBBRay1U6vkYheCdjyVNDm85zt5K9mHoGOfsOsqIszfAqrQQFIIKgjh2+FDgIj/zsl21Q=="
},
"csso": {
"version": "3.5.1",
"resolved": "https://registry.npmjs.org/csso/-/csso-3.5.1.tgz",
"integrity": "sha512-vrqULLffYU1Q2tLdJvaCYbONStnfkfimRxXNaGjxMldI0C7JPBC4rB1RyjhfdZ4m1frm8pM9uRPKH3d2knZ8gg==",
"requires": {
"css-tree": "1.0.0-alpha.29"
},
"dependencies": {
"css-tree": {
"version": "1.0.0-alpha.29",
"resolved": "https://registry.npmjs.org/css-tree/-/css-tree-1.0.0-alpha.29.tgz",
"integrity": "sha512-sRNb1XydwkW9IOci6iB2xmy8IGCj6r/fr+JWitvJ2JxQRPzN3T4AGGVWCMlVmVwM1gtgALJRmGIlWv5ppnGGkg==",
"requires": {
"mdn-data": "~1.1.0",
"source-map": "^0.5.3"
}
}
}
},
"csstype": {
"version": "2.6.0",
"resolved": "https://registry.npmjs.org/csstype/-/csstype-2.6.0.tgz",
"integrity": "sha512-by8hi8BlLbowQq0qtkx54d9aN73R9oUW20HISpka5kmgsR9F7nnxgfsemuR2sdCKZh+CDNf5egW9UZMm4mgJRg=="
},
"currently-unhandled": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/currently-unhandled/-/currently-unhandled-0.4.1.tgz",
"integrity": "sha1-mI3zP+qxke95mmE2nddsF635V+o=",
"requires": {
"array-find-index": "^1.0.1"
}
},
"cwebp-bin": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/cwebp-bin/-/cwebp-bin-5.0.0.tgz",
"integrity": "sha512-7//DAQG0yFr+YGrQ0of50sPlPm+8mIRv1TGxXtlOeq1S0Y56iY2lHlX/aLz+AOTWH/2YVNthNtH97pxRl7q33A==",
"requires": {
"bin-build": "^3.0.0",
"bin-wrapper": "^4.0.1",
"logalot": "^2.1.0"
}
},
"cyclist": {
"version": "0.2.2",
"resolved": "https://registry.npmjs.org/cyclist/-/cyclist-0.2.2.tgz",
"integrity": "sha1-GzN5LhHpFKL9bW7WRHRkRE5fpkA="
},
"damerau-levenshtein": {
"version": "1.0.4",
"resolved": "https://registry.npmjs.org/damerau-levenshtein/-/damerau-levenshtein-1.0.4.tgz",
"integrity": "sha1-AxkcQyy27qFou3fzpV/9zLiXhRQ="
},
"dashdash": {
"version": "1.14.1",
"resolved": "https://registry.npmjs.org/dashdash/-/dashdash-1.14.1.tgz",
"integrity": "sha1-hTz6D3y+L+1d4gMmuN1YEDX24vA=",
"requires": {
"assert-plus": "^1.0.0"
}
},
"date-now": {
"version": "0.1.4",
"resolved": "https://registry.npmjs.org/date-now/-/date-now-0.1.4.tgz",
"integrity": "sha1-6vQ5/U1ISK105cx9vvIAZyueNFs="
},
"debug": {
"version": "3.2.6",
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.6.tgz",
"integrity": "sha512-mel+jf7nrtEl5Pn1Qx46zARXKDpBbvzezse7p7LqINmdoIk8PYP5SySaxEmYv6TZ0JyEKA1hsCId6DIhgITtWQ==",
"requires": {
"ms": "^2.1.1"
}
},
"decamelize": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/decamelize/-/decamelize-1.2.0.tgz",
"integrity": "sha1-9lNNFRSCabIDUue+4m9QH5oZEpA="
},
"decode-uri-component": {
"version": "0.2.0",
"resolved": "https://registry.npmjs.org/decode-uri-component/-/decode-uri-component-0.2.0.tgz",
"integrity": "sha1-6zkTMzRYd1y4TNGh+uBiEGu4dUU="
},
"decompress": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/decompress/-/decompress-4.2.0.tgz",
"integrity": "sha1-eu3YVCflqS2s/lVnSnxQXpbQH50=",
"requires": {
"decompress-tar": "^4.0.0",
"decompress-tarbz2": "^4.0.0",
"decompress-targz": "^4.0.0",
"decompress-unzip": "^4.0.1",
"graceful-fs": "^4.1.10",
"make-dir": "^1.0.0",
"pify": "^2.3.0",
"strip-dirs": "^2.0.0"
},
"dependencies": {
"pify": {
"version": "2.3.0",
"resolved": "http://registry.npmjs.org/pify/-/pify-2.3.0.tgz",
"integrity": "sha1-7RQaasBDqEnqWISY59yosVMw6Qw="
}
}
},
"decompress-response": {
"version": "3.3.0",
"resolved": "https://registry.npmjs.org/decompress-response/-/decompress-response-3.3.0.tgz",
"integrity": "sha1-gKTdMjdIOEv6JICDYirt7Jgq3/M=",
"requires": {
"mimic-response": "^1.0.0"
}
},
"decompress-tar": {
"version": "4.1.1",
"resolved": "https://registry.npmjs.org/decompress-tar/-/decompress-tar-4.1.1.tgz",
"integrity": "sha512-JdJMaCrGpB5fESVyxwpCx4Jdj2AagLmv3y58Qy4GE6HMVjWz1FeVQk1Ct4Kye7PftcdOo/7U7UKzYBJgqnGeUQ==",
"requires": {
"file-type": "^5.2.0",
"is-stream": "^1.1.0",
"tar-stream": "^1.5.2"
},
"dependencies": {
"file-type": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/file-type/-/file-type-5.2.0.tgz",
"integrity": "sha1-LdvqfHP/42No365J3DOMBYwritY="
}
}
},
"decompress-tarbz2": {
"version": "4.1.1",
"resolved": "https://registry.npmjs.org/decompress-tarbz2/-/decompress-tarbz2-4.1.1.tgz",
"integrity": "sha512-s88xLzf1r81ICXLAVQVzaN6ZmX4A6U4z2nMbOwobxkLoIIfjVMBg7TeguTUXkKeXni795B6y5rnvDw7rxhAq9A==",
"requires": {
"decompress-tar": "^4.1.0",
"file-type": "^6.1.0",
"is-stream": "^1.1.0",
"seek-bzip": "^1.0.5",
"unbzip2-stream": "^1.0.9"
},
"dependencies": {
"file-type": {
"version": "6.2.0",
"resolved": "https://registry.npmjs.org/file-type/-/file-type-6.2.0.tgz",
"integrity": "sha512-YPcTBDV+2Tm0VqjybVd32MHdlEGAtuxS3VAYsumFokDSMG+ROT5wawGlnHDoz7bfMcMDt9hxuXvXwoKUx2fkOg=="
}
}
},
"decompress-targz": {
"version": "4.1.1",
"resolved": "https://registry.npmjs.org/decompress-targz/-/decompress-targz-4.1.1.tgz",
"integrity": "sha512-4z81Znfr6chWnRDNfFNqLwPvm4db3WuZkqV+UgXQzSngG3CEKdBkw5jrv3axjjL96glyiiKjsxJG3X6WBZwX3w==",
"requires": {
"decompress-tar": "^4.1.1",
"file-type": "^5.2.0",
"is-stream": "^1.1.0"
},
"dependencies": {
"file-type": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/file-type/-/file-type-5.2.0.tgz",
"integrity": "sha1-LdvqfHP/42No365J3DOMBYwritY="
}
}
},
"decompress-unzip": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/decompress-unzip/-/decompress-unzip-4.0.1.tgz",
"integrity": "sha1-3qrM39FK6vhVePczroIQ+bSEj2k=",
"requires": {
"file-type": "^3.8.0",
"get-stream": "^2.2.0",
"pify": "^2.3.0",
"yauzl": "^2.4.2"
},
"dependencies": {
"file-type": {
"version": "3.9.0",
"resolved": "http://registry.npmjs.org/file-type/-/file-type-3.9.0.tgz",
"integrity": "sha1-JXoHg4TR24CHvESdEH1SpSZyuek="
},
"get-stream": {
"version": "2.3.1",
"resolved": "http://registry.npmjs.org/get-stream/-/get-stream-2.3.1.tgz",
"integrity": "sha1-Xzj5PzRgCWZu4BUKBUFn+Rvdld4=",
"requires": {
"object-assign": "^4.0.1",
"pinkie-promise": "^2.0.0"
}
},
"pify": {
"version": "2.3.0",
"resolved": "http://registry.npmjs.org/pify/-/pify-2.3.0.tgz",
"integrity": "sha1-7RQaasBDqEnqWISY59yosVMw6Qw="
}
}
},
"tar-stream": {
"version": "1.6.2",
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-1.6.2.tgz",
@ -26322,6 +26430,11 @@
"rimraf": "^3.0.0"
},
"dependencies": {
"ms": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
"integrity": "sha1-VgiurfwAvmwpAd9fmGF4jeDVl8g="
},
"rimraf": {
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/rimraf/-/rimraf-3.0.2.tgz",
@ -26329,11 +26442,6 @@
"requires": {
"glob": "^7.1.3"
}
},
"ms": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
"integrity": "sha1-VgiurfwAvmwpAd9fmGF4jeDVl8g="
}
}
},
@ -28273,6 +28381,20 @@
"resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz",
"integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg=="
},
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
"integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g=="
},
"string-width": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.0.tgz",
@ -28291,21 +28413,6 @@
"ansi-regex": "^5.0.0"
}
},
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"chalk": "^2.4.2",
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
"integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g=="
},
"supports-color": {
"version": "6.1.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-6.1.0.tgz",
@ -28508,6 +28615,20 @@
"number-is-nan": "^1.0.0"
}
},
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
"integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g=="
},
"string-width": {
"version": "1.0.2",
"resolved": "http://registry.npmjs.org/string-width/-/string-width-1.0.2.tgz",
@ -28518,21 +28639,6 @@
"strip-ansi": "^3.0.0"
}
},
"postcss": {
"version": "7.0.14",
"resolved": "https://registry.npmjs.org/postcss/-/postcss-7.0.14.tgz",
"integrity": "sha512-NsbD6XUUMZvBxtQAJuWDJeeC4QFsmWsfozWxCJPWf3M55K9iu2iMDaKqyoOdTJ1R4usBXuxlVFAIo8rZPQD4Bg==",
"requires": {
"chalk": "^2.4.2",
"source-map": "^0.6.1",
"supports-color": "^6.1.0"
}
},
"source-map": {
"version": "0.6.1",
"resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz",
"integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g=="
},
"supports-color": {
"version": "6.1.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-6.1.0.tgz",

View File

@ -25,6 +25,7 @@
"gatsby-plugin-plausible": "0.0.6",
"gatsby-plugin-react-helmet": "^3.0.6",
"gatsby-plugin-react-svg": "^2.1.2",
"gatsby-plugin-robots-txt": "^1.5.5",
"gatsby-plugin-sass": "^2.0.10",
"gatsby-plugin-sharp": "^2.0.20",
"gatsby-plugin-sitemap": "^2.0.5",
@ -52,6 +53,7 @@
"scripts": {
"build": "gatsby build",
"dev": "gatsby develop",
"dev:legacy": "SPACY_LEGACY=1 npm run dev",
"lint": "eslint **",
"clear": "rm -rf .cache",
"test": "echo \"Write tests! -> https://gatsby.app/unit-testing\""

View File

@ -1,8 +1,10 @@
import React, { Fragment } from 'react'
import classNames from 'classnames'
import pattern from '../images/pattern_blue.jpg'
import patternOverlay from '../images/pattern_landing.jpg'
import patternDefault from '../images/pattern_blue.jpg'
import overlayDefault from '../images/pattern_landing.jpg'
import patternLegacy from '../images/pattern_legacy.jpg'
import overlayLegacy from '../images/pattern_landing_legacy.jpg'
import logoSvgs from '../images/logos'
import Grid from './grid'
@ -14,9 +16,11 @@ import Link from './link'
import { chunkArray } from './util'
import classes from '../styles/landing.module.sass'
export const LandingHeader = ({ style = {}, children }) => {
export const LandingHeader = ({ style = {}, children, legacy }) => {
const pattern = legacy ? patternLegacy : patternDefault
const overlay = legacy ? overlayLegacy : overlayDefault
const wrapperStyle = { backgroundImage: `url(${pattern})` }
const contentStyle = { backgroundImage: `url(${patternOverlay})`, ...style }
const contentStyle = { backgroundImage: `url(${overlay})`, ...style }
return (
<header className={classes.header}>
<div className={classes.headerWrapper} style={wrapperStyle}>

View File

@ -5,9 +5,15 @@ import classNames from 'classnames'
import patternBlue from '../images/pattern_blue.jpg'
import patternGreen from '../images/pattern_green.jpg'
import patternPurple from '../images/pattern_purple.jpg'
import patternLegacy from '../images/pattern_legacy.jpg'
import classes from '../styles/main.module.sass'
const patterns = { blue: patternBlue, green: patternGreen, purple: patternPurple }
const patterns = {
blue: patternBlue,
green: patternGreen,
purple: patternPurple,
legacy: patternLegacy,
}
export const Content = ({ Component = 'div', className, children }) => (
<Component className={classNames(classes.content, className)}>{children}</Component>

View File

@ -6,10 +6,12 @@ import { StaticQuery, graphql } from 'gatsby'
import socialImageDefault from '../images/social_default.jpg'
import socialImageApi from '../images/social_api.jpg'
import socialImageUniverse from '../images/social_universe.jpg'
import socialImageLegacy from '../images/social_legacy.jpg'
function getPageTitle(title, sitename, slogan, sectionTitle) {
function getPageTitle(title, sitename, slogan, sectionTitle, legacy) {
if (sectionTitle && title) {
return `${title} · ${sitename} ${sectionTitle}`
const suffix = legacy ? ' (legacy)' : ''
return `${title} · ${sitename} ${sectionTitle}${suffix}`
}
if (title) {
return `${title} · ${sitename}`
@ -17,7 +19,8 @@ function getPageTitle(title, sitename, slogan, sectionTitle) {
return `${sitename} · ${slogan}`
}
function getImage(section) {
function getImage(section, legacy) {
if (legacy) return socialImageLegacy
if (section === 'api') return socialImageApi
if (section === 'universe') return socialImageUniverse
return socialImageDefault
@ -29,13 +32,15 @@ const SEO = ({ description, lang, title, section, sectionTitle, bodyClass }) =>
render={data => {
const siteMetadata = data.site.siteMetadata
const metaDescription = description || siteMetadata.description
const legacy = siteMetadata.legacy
const pageTitle = getPageTitle(
title,
siteMetadata.title,
siteMetadata.slogan,
sectionTitle
sectionTitle,
legacy
)
const socialImage = siteMetadata.siteUrl + getImage(section)
const socialImage = siteMetadata.siteUrl + getImage(section, legacy)
const meta = [
{
name: 'description',
@ -125,6 +130,7 @@ const query = graphql`
site {
siteMetadata {
title
legacy
description
slogan
siteUrl

View File

@ -6,6 +6,7 @@ import siteMetadata from '../../meta/site.json'
const htmlToReactParser = new HtmlToReactParser()
export const defaultBranch = siteMetadata.codeBranch
export const repo = siteMetadata.repo
export const modelsRepo = siteMetadata.modelsRepo
@ -18,11 +19,11 @@ export const headingTextClassName = 'heading-text'
/**
* Create a link to the spaCy repository on GitHub
* @param {string} filepath - The file path relative to the root of the repo.
* @param {string} [branch] - Optional branch. Defaults to master.
* @param {string} [branch] - Optional branch.
* @returns {string} - URL to the file on GitHub.
*/
export function github(filepath, branch = 'master') {
const path = filepath ? '/tree/' + (branch || 'master') + '/' + filepath : ''
export function github(filepath, branch = defaultBranch) {
const path = filepath ? '/tree/' + (branch || defaultBranch) + '/' + filepath : ''
return `https://github.com/${repo}${path}`
}
@ -30,9 +31,9 @@ export function github(filepath, branch = 'master') {
* Get the source of a file in the documentation based on its slug
* @param {string} slug - The slug, e.g. /api/doc.
* @param {boolean} [isIndex] - Whether the page is an index, e.g. /api/index.md
* @param {string} [branch] - Optional branch on GitHub. Defaults to master.
* @param {string} [branch] - Optional branch on GitHub.
*/
export function getCurrentSource(slug, isIndex = false, branch = 'master') {
export function getCurrentSource(slug, isIndex = false, branch = defaultBranch) {
const ext = isIndex ? '/index.md' : '.md'
return github(`website/docs${slug}${ext}`, branch)
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 199 KiB

View File

@ -8,6 +8,9 @@
font: var(--font-size-sm)/var(--line-height-md) var(--font-primary)
text-align: center
padding: 1rem
box-shadow: var(--box-shadow)
border-top: 2px solid
color: var(--color-theme)
.warning
--alert-bg: var(--color-yellow-light)

View File

@ -47,6 +47,11 @@
--color-theme-purple-light: hsla(255, 61%, 54%, 0.06)
--color-theme-purple-opaque: hsla(255, 61%, 54%, 0.11)
--color-theme-legacy: #6f6f6f
--color-theme-legacy-dark: hsl(257, 0%, 35%)
--color-theme-legacy-light: hsla(257, 0%, 67%, 0.06)
--color-theme-legacy-opaque: hsla(257, 0%, 67%, 0.11)
// Regular colors
--color-back: hsl(0, 0%, 100%)
--color-front: hsl(213, 15%, 12%)
@ -106,6 +111,12 @@
--color-theme-light: var(--color-theme-purple-light)
--color-theme-opaque: var(--color-theme-purple-opaque)
.theme-legacy
--color-theme: var(--color-theme-legacy)
--color-theme-dark: var(--color-theme-legacy-dark)
--color-theme-light: var(--color-theme-legacy-light)
--color-theme-opaque: var(--color-theme-legacy-opaque)
/* Fonts */

View File

@ -31,7 +31,7 @@ const Docs = ({ pageContext, children }) => (
theme,
version,
} = pageContext
const { sidebars = [], modelsRepo, languages } = site.siteMetadata
const { sidebars = [], modelsRepo, languages, legacy } = site.siteMetadata
const isModels = section === 'models'
const sidebar = pageContext.sidebar
? { items: pageContext.sidebar }
@ -83,7 +83,7 @@ const Docs = ({ pageContext, children }) => (
{sidebar && <Sidebar items={sidebar.items} pageMenu={pageMenu} slug={slug} />}
<Main
section={section}
theme={theme}
theme={legacy ? 'legacy' : theme}
sidebar
asides
wrapContent
@ -140,6 +140,7 @@ const query = graphql`
siteMetadata {
repo
modelsRepo
legacy
languages {
code
name

View File

@ -75,7 +75,7 @@ const scopeComponents = {
InlineCode,
}
const AlertSpace = () => {
const AlertSpace = ({ legacy }) => {
const isOnline = useOnlineStatus()
return (
<>
@ -84,6 +84,16 @@ const AlertSpace = () => {
But don't worry, your visited pages should be saved for you.
</Alert>
)}
{legacy && (
<Alert
title="You're viewing the legacy documentation."
icon="warning"
closeOnClick={false}
>
This page reflects an older version of spaCy, not the latest{' '}
<Link to="https://spacy.io">stable release</Link>.
</Alert>
)}
</>
)
}
@ -131,8 +141,9 @@ class Layout extends React.Component {
const { file, site = {} } = data || {}
const mdx = file ? file.childMdx : null
const { title, section, sectionTitle, teaser, theme = 'blue', searchExclude } = pageContext
const bodyClass = classNames(`theme-${theme}`, { 'search-exclude': !!searchExclude })
const meta = site.siteMetadata || {}
const uiTheme = meta.legacy ? 'legacy' : theme
const bodyClass = classNames(`theme-${uiTheme}`, { 'search-exclude': !!searchExclude })
const isDocs = ['usage', 'models', 'api', 'styleguide'].includes(section)
const content = !mdx ? null : (
<MDXProvider components={mdxComponents}>
@ -149,12 +160,12 @@ class Layout extends React.Component {
sectionTitle={sectionTitle}
bodyClass={bodyClass}
/>
<AlertSpace />
<AlertSpace legacy={meta.legacy} />
<Navigation
title={meta.title}
items={meta.navigation}
section={section}
search={<Search settings={meta.docSearch} />}
search={meta.legacy ? null : <Search settings={meta.docSearch} />}
>
<Progress key={location.href} />
</Navigation>
@ -186,6 +197,7 @@ export const pageQuery = graphql`
siteMetadata {
title
description
legacy
navigation {
text
url

View File

@ -30,8 +30,8 @@ function filterResources(resources, data) {
return sorted.filter(res => (res.category || []).includes(data.id))
}
const UniverseContent = ({ content = [], categories, pageContext, location, mdxComponents }) => {
const { theme, data = {} } = pageContext
const UniverseContent = ({ content = [], categories, pageContext, mdxComponents, theme }) => {
const { data = {} } = pageContext
const filteredResources = filterResources(content, data)
const activeData = data ? content.find(({ id }) => id === data.id) : null
const markdownComponents = { ...mdxComponents, code: InlineCode }
@ -304,6 +304,7 @@ const Universe = ({ pageContext, location, mdxComponents }) => (
render={data => {
const content = data.site.siteMetadata.universe.resources
const categories = data.site.siteMetadata.universe.categories
const theme = data.site.siteMetadata.legacy ? 'legacy' : pageContext.theme
return (
<UniverseContent
content={content}
@ -311,6 +312,7 @@ const Universe = ({ pageContext, location, mdxComponents }) => (
pageContext={pageContext}
location={location}
mdxComponents={mdxComponents}
theme={theme}
/>
)
}}
@ -323,6 +325,7 @@ const query = graphql`
query UniverseQuery {
site {
siteMetadata {
legacy
universe {
resources {
type

View File

@ -69,7 +69,7 @@ const Landing = ({ data }) => {
const counts = getCounts(data.languages)
return (
<>
<LandingHeader>
<LandingHeader legacy={data.legacy}>
<LandingTitle>
Industrial-Strength
<br />
@ -150,12 +150,10 @@ const Landing = ({ data }) => {
<LandingBannerGrid>
<LandingBanner
title="spaCy v3.0 nightly: Transformer-based pipelines, new training system, project templates &amp; more"
label="Try the pre-release"
to="https://nightly.spacy.io"
title="spaCy v3.0: Transformer-based pipelines, new training system, project templates &amp; more"
label="Out now"
to="https://spacy.io"
button="See what's new"
background="#8758fe"
color="#ffffff"
small
>
spaCy v3.0 features all new <strong>transformer-based pipelines</strong> that
@ -300,6 +298,7 @@ const landingQuery = graphql`
query LandingQuery {
site {
siteMetadata {
legacy
repo
languages {
models