Fixing pretrain (#7342)

* initialize NLP with train corpus

* add more pretraining tests

* more tests

* function to fetch tok2vec layer for pretraining

* clarify parameter name

* test different objectives

* formatting

* fix check for static vectors when using vectors objective

* clarify docs

* logger statement

* fix init_tok2vec and proc.initialize order

* test training after pretraining

* add init_config tests for pretraining

* pop pretraining block to avoid config validation errors

* custom errors
This commit is contained in:
Sofie Van Landeghem 2021-03-09 04:01:13 +01:00 committed by GitHub
parent 97bcf2ae3a
commit cd70c3cb79
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 413 additions and 35 deletions

View File

@ -487,7 +487,10 @@ class Errors:
E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.") E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x # New errors added in v3.x
E874 = ("Could not initialize the tok2vec model from component "
"'{component}' and layer '{layer}'.")
E875 = ("To use the PretrainVectors objective, make sure that static vectors are loaded. "
"In the config, these are defined by the initialize.vectors setting.")
E879 = ("Unexpected type for 'spans' data. Provide a dictionary mapping keys to " E879 = ("Unexpected type for 'spans' data. Provide a dictionary mapping keys to "
"a list of spans, with each span represented by a tuple (start_char, end_char). " "a list of spans, with each span represented by a tuple (start_char, end_char). "
"The tuple can be optionally extended with a label and a KB ID.") "The tuple can be optionally extended with a label and a KB ID.")

View File

@ -1222,10 +1222,6 @@ class Language:
init_vocab( init_vocab(
self, data=I["vocab_data"], lookups=I["lookups"], vectors=I["vectors"] self, data=I["vocab_data"], lookups=I["lookups"], vectors=I["vectors"]
) )
pretrain_cfg = config.get("pretraining")
if pretrain_cfg:
P = registry.resolve(pretrain_cfg, schema=ConfigSchemaPretrain)
init_tok2vec(self, P, I)
if self.vocab.vectors.data.shape[1] >= 1: if self.vocab.vectors.data.shape[1] >= 1:
ops = get_current_ops() ops = get_current_ops()
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data) self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
@ -1244,6 +1240,10 @@ class Language:
proc.initialize, p_settings, section="components", name=name proc.initialize, p_settings, section="components", name=name
) )
proc.initialize(get_examples, nlp=self, **p_settings) proc.initialize(get_examples, nlp=self, **p_settings)
pretrain_cfg = config.get("pretraining")
if pretrain_cfg:
P = registry.resolve(pretrain_cfg, schema=ConfigSchemaPretrain)
init_tok2vec(self, P, I)
self._link_components() self._link_components()
self._optimizer = sgd self._optimizer = sgd
if sgd is not None: if sgd is not None:
@ -1592,6 +1592,7 @@ class Language:
# using the nlp.config with all defaults. # using the nlp.config with all defaults.
config = util.copy_config(config) config = util.copy_config(config)
orig_pipeline = config.pop("components", {}) orig_pipeline = config.pop("components", {})
orig_pretraining = config.pop("pretraining", None)
config["components"] = {} config["components"] = {}
if auto_fill: if auto_fill:
filled = registry.fill(config, validate=validate, schema=ConfigSchema) filled = registry.fill(config, validate=validate, schema=ConfigSchema)
@ -1599,6 +1600,9 @@ class Language:
filled = config filled = config
filled["components"] = orig_pipeline filled["components"] = orig_pipeline
config["components"] = orig_pipeline config["components"] = orig_pipeline
if orig_pretraining is not None:
filled["pretraining"] = orig_pretraining
config["pretraining"] = orig_pretraining
resolved_nlp = registry.resolve( resolved_nlp = registry.resolve(
filled["nlp"], validate=validate, schema=ConfigSchemaNlp filled["nlp"], validate=validate, schema=ConfigSchemaNlp
) )

View File

@ -21,6 +21,8 @@ def create_pretrain_vectors(
maxout_pieces: int, hidden_size: int, loss: str maxout_pieces: int, hidden_size: int, loss: str
) -> Callable[["Vocab", Model], Model]: ) -> Callable[["Vocab", Model], Model]:
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model: def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
if vocab.vectors.data.shape[1] == 0:
raise ValueError(Errors.E875)
model = build_cloze_multi_task_model( model = build_cloze_multi_task_model(
vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
) )
@ -134,7 +136,7 @@ def build_cloze_characters_multi_task_model(
) -> Model: ) -> Model:
output_layer = chain( output_layer = chain(
list2array(), list2array(),
Maxout(hidden_size, nP=maxout_pieces), Maxout(nO=hidden_size, nP=maxout_pieces),
LayerNorm(nI=hidden_size), LayerNorm(nI=hidden_size),
MultiSoftmax([256] * nr_char, nI=hidden_size), MultiSoftmax([256] * nr_char, nI=hidden_size),
) )

View File

@ -293,7 +293,7 @@ def test_serialize_parser(parser_config_string):
def test_config_nlp_roundtrip(): def test_config_nlp_roundtrip():
"""Test that a config prduced by the nlp object passes training config """Test that a config produced by the nlp object passes training config
validation.""" validation."""
nlp = English() nlp = English()
nlp.add_pipe("entity_ruler") nlp.add_pipe("entity_ruler")

View File

@ -4,7 +4,7 @@ from spacy.training import docs_to_json, offsets_to_biluo_tags
from spacy.training.converters import iob_to_docs, conll_ner_to_docs, conllu_to_docs from spacy.training.converters import iob_to_docs, conll_ner_to_docs, conllu_to_docs
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
from spacy.lang.nl import Dutch from spacy.lang.nl import Dutch
from spacy.util import ENV_VARS from spacy.util import ENV_VARS, load_model_from_config
from spacy.cli import info from spacy.cli import info
from spacy.cli.init_config import init_config, RECOMMENDATIONS from spacy.cli.init_config import init_config, RECOMMENDATIONS
from spacy.cli._util import validate_project_commands, parse_config_overrides from spacy.cli._util import validate_project_commands, parse_config_overrides
@ -397,10 +397,14 @@ def test_parse_cli_overrides():
"pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]] "pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]]
) )
@pytest.mark.parametrize("optimize", ["efficiency", "accuracy"]) @pytest.mark.parametrize("optimize", ["efficiency", "accuracy"])
def test_init_config(lang, pipeline, optimize): @pytest.mark.parametrize("pretraining", [True, False])
def test_init_config(lang, pipeline, optimize, pretraining):
# TODO: add more tests and also check for GPU with transformers # TODO: add more tests and also check for GPU with transformers
config = init_config(lang=lang, pipeline=pipeline, optimize=optimize, gpu=False) config = init_config(lang=lang, pipeline=pipeline, optimize=optimize, pretraining=pretraining, gpu=False)
assert isinstance(config, Config) assert isinstance(config, Config)
if pretraining:
config["paths"]["raw_text"] = "my_data.jsonl"
nlp = load_model_from_config(config, auto_fill=True)
def test_model_recommendations(): def test_model_recommendations():

View File

@ -0,0 +1,345 @@
from pathlib import Path
import numpy as np
import pytest
import srsly
from spacy.vocab import Vocab
from thinc.api import Config
from ..util import make_tempdir
from ... import util
from ...lang.en import English
from ...training.initialize import init_nlp
from ...training.loop import train
from ...training.pretrain import pretrain
from ...tokens import Doc, DocBin
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
pretrain_string_listener = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_internal = """
[nlp]
lang = "en"
pipeline = ["tagger"]
[components]
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_vectors = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[pretraining.objective]
@architectures = spacy.PretrainVectors.v1
maxout_pieces = 3
hidden_size = 300
loss = cosine
[training]
max_epochs = 5
"""
CHAR_OBJECTIVES = [
{},
{"@architectures": "spacy.PretrainCharacters.v1"},
{
"@architectures": "spacy.PretrainCharacters.v1",
"maxout_pieces": 5,
"hidden_size": 42,
"n_characters": 2,
},
]
VECTOR_OBJECTIVES = [
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 3,
"hidden_size": 300,
"loss": "cosine",
},
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 2,
"hidden_size": 200,
"loss": "L2",
},
]
def test_pretraining_default():
"""Test that pretraining defaults to a character objective"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
assert "PretrainCharacters" in filled["pretraining"]["objective"]["@architectures"]
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
def test_pretraining_tok2vec_characters(objective):
"""Test that pretraining works with the character objective"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["pretraining"]["component"] == "tok2vec"
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors_fail(objective):
"""Test that pretraining doesn't works with the vectors objective if there are no static vectors"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["initialize"]["vectors"] is None
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors(objective):
"""Test that pretraining works with the vectors objective and static vectors defined"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
nlp_path = write_vectors_model(tmp_dir)
filled["initialize"]["vectors"] = nlp_path
filled = filled.interpolate()
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("config", [pretrain_string_internal, pretrain_string_listener])
def test_pretraining_tagger_tok2vec(config):
"""Test pretraining of the tagger's tok2vec layer (via a listener)"""
config = Config().from_str(pretrain_string_listener)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
filled = filled.interpolate()
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
def test_pretraining_tagger():
"""Test pretraining of the tagger itself will throw an error (not an appropriate tok2vec layer)"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled = filled.interpolate()
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
def test_pretraining_training():
"""Test that training can use a pretrained Tok2Vec model"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
train_config = util.load_config(DEFAULT_CONFIG_PATH)
filled = train_config.merge(filled)
with make_tempdir() as tmp_dir:
pretrain_dir = tmp_dir / "pretrain"
pretrain_dir.mkdir()
file_path = write_sample_jsonl(pretrain_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
train_dir = tmp_dir / "train"
train_dir.mkdir()
train_path, dev_path = write_sample_training(train_dir)
filled["paths"]["train"] = train_path
filled["paths"]["dev"] = dev_path
filled = filled.interpolate()
P = filled["pretraining"]
nlp_base = init_nlp(filled)
model_base = nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
embed_base = None
for node in model_base.walk():
if node.name == "hashembed":
embed_base = node
pretrain(filled, pretrain_dir)
pretrained_model = Path(pretrain_dir / "model3.bin")
assert pretrained_model.exists()
filled["initialize"]["init_tok2vec"] = str(pretrained_model)
nlp = init_nlp(filled)
model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
embed = None
for node in model.walk():
if node.name == "hashembed":
embed = node
# ensure that the tok2vec weights are actually changed by the pretraining
assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
train(nlp, train_dir)
def write_sample_jsonl(tmp_dir):
data = [
{
"meta": {"id": "1"},
"text": "This is the best TV you'll ever buy!",
"cats": {"pos": 1, "neg": 0},
},
{
"meta": {"id": "2"},
"text": "I wouldn't buy this again.",
"cats": {"pos": 0, "neg": 1},
},
]
file_path = f"{tmp_dir}/text.jsonl"
srsly.write_jsonl(file_path, data)
return file_path
def write_sample_training(tmp_dir):
words = ["The", "players", "start", "."]
tags = ["DT", "NN", "VBZ", "."]
doc = Doc(English().vocab, words=words, tags=tags)
doc_bin = DocBin()
doc_bin.add(doc)
train_path = f"{tmp_dir}/train.spacy"
dev_path = f"{tmp_dir}/dev.spacy"
doc_bin.to_disk(train_path)
doc_bin.to_disk(dev_path)
return train_path, dev_path
def write_vectors_model(tmp_dir):
import numpy
vocab = Vocab()
vector_data = {
"dog": numpy.random.uniform(-1, 1, (300,)),
"cat": numpy.random.uniform(-1, 1, (300,)),
"orange": numpy.random.uniform(-1, 1, (300,))
}
for word, vector in vector_data.items():
vocab.set_vector(word, vector)
nlp_path = tmp_dir / "vectors_model"
nlp = English(vocab)
nlp.to_disk(nlp_path)
return str(nlp_path)

View File

@ -9,6 +9,7 @@ import gzip
import zipfile import zipfile
import tqdm import tqdm
from .pretrain import get_tok2vec_ref
from ..lookups import Lookups from ..lookups import Lookups
from ..vectors import Vectors from ..vectors import Vectors
from ..errors import Errors, Warnings from ..errors import Errors, Warnings
@ -147,10 +148,6 @@ def init_tok2vec(
weights_data = None weights_data = None
init_tok2vec = ensure_path(I["init_tok2vec"]) init_tok2vec = ensure_path(I["init_tok2vec"])
if init_tok2vec is not None: if init_tok2vec is not None:
if P["objective"].get("type") == "vectors" and not I["vectors"]:
err = 'need initialize.vectors if pretraining.objective.type is "vectors"'
errors = [{"loc": ["initialize"], "msg": err}]
raise ConfigValidationError(config=nlp.config, errors=errors)
if not init_tok2vec.exists(): if not init_tok2vec.exists():
err = f"can't find pretrained tok2vec: {init_tok2vec}" err = f"can't find pretrained tok2vec: {init_tok2vec}"
errors = [{"loc": ["initialize", "init_tok2vec"], "msg": err}] errors = [{"loc": ["initialize", "init_tok2vec"], "msg": err}]
@ -158,21 +155,9 @@ def init_tok2vec(
with init_tok2vec.open("rb") as file_: with init_tok2vec.open("rb") as file_:
weights_data = file_.read() weights_data = file_.read()
if weights_data is not None: if weights_data is not None:
tok2vec_component = P["component"] layer = get_tok2vec_ref(nlp, P)
if tok2vec_component is None:
desc = (
f"To use pretrained tok2vec weights, [pretraining.component] "
f"needs to specify the component that should load them."
)
err = "component can't be null"
errors = [{"loc": ["pretraining", "component"], "msg": err}]
raise ConfigValidationError(
config=nlp.config["pretraining"], errors=errors, desc=desc
)
layer = nlp.get_pipe(tok2vec_component).model
if P["layer"]:
layer = layer.get_ref(P["layer"])
layer.from_bytes(weights_data) layer.from_bytes(weights_data)
logger.info(f"Loaded pretrained weights from {init_tok2vec}")
return True return True
return False return False

View File

@ -6,9 +6,12 @@ from collections import Counter
import srsly import srsly
import time import time
import re import re
from thinc.config import ConfigValidationError
from wasabi import Printer from wasabi import Printer
from .example import Example from .example import Example
from ..errors import Errors
from ..tokens import Doc from ..tokens import Doc
from ..schemas import ConfigSchemaPretrain from ..schemas import ConfigSchemaPretrain
from ..util import registry, load_model_from_config, dot_to_object from ..util import registry, load_model_from_config, dot_to_object
@ -133,12 +136,21 @@ def create_pretraining_model(nlp, pretrain_config):
The actual tok2vec layer is stored as a reference, and only this bit will be The actual tok2vec layer is stored as a reference, and only this bit will be
serialized to file and read back in when calling the 'train' command. serialized to file and read back in when calling the 'train' command.
""" """
with nlp.select_pipes(enable=[]):
nlp.initialize() nlp.initialize()
component = nlp.get_pipe(pretrain_config["component"]) tok2vec = get_tok2vec_ref(nlp, pretrain_config)
if pretrain_config.get("layer"): # If the config referred to a Tok2VecListener, grab the original model instead
tok2vec = component.model.get_ref(pretrain_config["layer"]) if type(tok2vec).__name__ == "Tok2VecListener":
else: original_tok2vec = (
tok2vec = component.model tok2vec.upstream_name if tok2vec.upstream_name is not "*" else "tok2vec"
)
tok2vec = nlp.get_pipe(original_tok2vec).model
try:
tok2vec.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
except ValueError:
component = pretrain_config["component"]
layer = pretrain_config["layer"]
raise ValueError(Errors.E874.format(component=component, layer=layer))
create_function = pretrain_config["objective"] create_function = pretrain_config["objective"]
model = create_function(nlp.vocab, tok2vec) model = create_function(nlp.vocab, tok2vec)
@ -147,6 +159,24 @@ def create_pretraining_model(nlp, pretrain_config):
return model return model
def get_tok2vec_ref(nlp, pretrain_config):
tok2vec_component = pretrain_config["component"]
if tok2vec_component is None:
desc = (
f"To use pretrained tok2vec weights, [pretraining.component] "
f"needs to specify the component that should load them."
)
err = "component can't be null"
errors = [{"loc": ["pretraining", "component"], "msg": err}]
raise ConfigValidationError(
config=nlp.config["pretraining"], errors=errors, desc=desc
)
layer = nlp.get_pipe(tok2vec_component).model
if pretrain_config["layer"]:
layer = layer.get_ref(pretrain_config["layer"])
return layer
class ProgressTracker: class ProgressTracker:
def __init__(self, frequency=1000000): def __init__(self, frequency=1000000):
self.loss = 0.0 self.loss = 0.0

View File

@ -447,6 +447,9 @@ For more information, see the section on
> ```ini > ```ini
> [pretraining] > [pretraining]
> component = "tok2vec" > component = "tok2vec"
>
> [initialize]
> vectors = "en_core_web_lg"
> ... > ...
> >
> [pretraining.objective] > [pretraining.objective]
@ -457,7 +460,9 @@ For more information, see the section on
> ``` > ```
Predict the word's vector from a static embeddings table as pretraining Predict the word's vector from a static embeddings table as pretraining
objective for a Tok2Vec layer. objective for a Tok2Vec layer. To use this objective, make sure that the
`initialize.vectors` section in the config refers to a model with static
vectors.
| Name | Description | | Name | Description |
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | | --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |