mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Merge remote-tracking branch 'upstream/master' into chore/update-v4-from-master-7
This commit is contained in:
commit
cd95b29053
|
@ -175,6 +175,18 @@ def test_modify_span_group(doc):
|
|||
assert group[0].label == doc.vocab.strings["TEST"]
|
||||
|
||||
|
||||
def test_char_span_attributes(doc):
|
||||
label = "LABEL"
|
||||
kb_id = "KB_ID"
|
||||
span_id = "SPAN_ID"
|
||||
span1 = doc.char_span(20, 45, label=label, kb_id=kb_id, span_id=span_id)
|
||||
span2 = doc[1:].char_span(15, 40, label=label, kb_id=kb_id, span_id=span_id)
|
||||
assert span1.text == span2.text
|
||||
assert span1.label_ == span2.label_ == label
|
||||
assert span1.kb_id_ == span2.kb_id_ == kb_id
|
||||
assert span1.id_ == span2.id_ == span_id
|
||||
|
||||
|
||||
def test_spans_sent_spans(doc):
|
||||
sents = list(doc.sents)
|
||||
assert sents[0].start == 0
|
||||
|
@ -354,6 +366,14 @@ def test_spans_by_character(doc):
|
|||
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
|
||||
)
|
||||
|
||||
# Span.char_span + alignment mode "contract"
|
||||
span2 = doc[0:2].char_span(
|
||||
span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
|
||||
)
|
||||
assert span1.start_char == span2.start_char
|
||||
assert span1.end_char == span2.end_char
|
||||
assert span2.label_ == "GPE"
|
||||
|
||||
|
||||
def test_span_to_array(doc):
|
||||
span = doc[1:-2]
|
||||
|
|
|
@ -1017,8 +1017,6 @@ def test_local_remote_storage_pull_missing():
|
|||
|
||||
|
||||
def test_cli_find_threshold(capsys):
|
||||
thresholds = numpy.linspace(0, 1, 10)
|
||||
|
||||
def make_examples(nlp: Language) -> List[Example]:
|
||||
docs: List[Example] = []
|
||||
|
||||
|
@ -1082,8 +1080,6 @@ def test_cli_find_threshold(capsys):
|
|||
scores_key="cats_macro_f",
|
||||
silent=True,
|
||||
)
|
||||
assert best_threshold != thresholds[0]
|
||||
assert thresholds[0] < best_threshold < thresholds[9]
|
||||
assert best_score == max(res.values())
|
||||
assert res[1.0] == 0.0
|
||||
|
||||
|
@ -1091,7 +1087,7 @@ def test_cli_find_threshold(capsys):
|
|||
nlp, _ = init_nlp((("spancat", {}),))
|
||||
with make_tempdir() as nlp_dir:
|
||||
nlp.to_disk(nlp_dir)
|
||||
res = find_threshold(
|
||||
best_threshold, best_score, res = find_threshold(
|
||||
model=nlp_dir,
|
||||
data_path=docs_dir / "docs.spacy",
|
||||
pipe_name="spancat",
|
||||
|
@ -1099,10 +1095,8 @@ def test_cli_find_threshold(capsys):
|
|||
scores_key="spans_sc_f",
|
||||
silent=True,
|
||||
)
|
||||
assert res[0] != thresholds[0]
|
||||
assert thresholds[0] < res[0] < thresholds[8]
|
||||
assert res[1] >= 0.6
|
||||
assert res[2][1.0] == 0.0
|
||||
assert best_score == max(res.values())
|
||||
assert res[1.0] == 0.0
|
||||
|
||||
# Having multiple textcat_multilabel components should work, since the name has to be specified.
|
||||
nlp, _ = init_nlp((("textcat_multilabel", {}),))
|
||||
|
|
|
@ -4,7 +4,7 @@ from typer.testing import CliRunner
|
|||
from spacy.tokens import DocBin, Doc
|
||||
|
||||
from spacy.cli._util import app
|
||||
from .util import make_tempdir
|
||||
from .util import make_tempdir, normalize_whitespace
|
||||
|
||||
|
||||
def test_convert_auto():
|
||||
|
@ -38,8 +38,8 @@ def test_benchmark_accuracy_alias():
|
|||
# Verify that the `evaluate` alias works correctly.
|
||||
result_benchmark = CliRunner().invoke(app, ["benchmark", "accuracy", "--help"])
|
||||
result_evaluate = CliRunner().invoke(app, ["evaluate", "--help"])
|
||||
assert result_benchmark.stdout == result_evaluate.stdout.replace(
|
||||
"spacy evaluate", "spacy benchmark accuracy"
|
||||
assert normalize_whitespace(result_benchmark.stdout) == normalize_whitespace(
|
||||
result_evaluate.stdout.replace("spacy evaluate", "spacy benchmark accuracy")
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import numpy
|
||||
import tempfile
|
||||
import contextlib
|
||||
import re
|
||||
import srsly
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
|
@ -95,3 +96,7 @@ def assert_packed_msg_equal(b1, b2):
|
|||
for (k1, v1), (k2, v2) in zip(sorted(msg1.items()), sorted(msg2.items())):
|
||||
assert k1 == k2
|
||||
assert v1 == v2
|
||||
|
||||
|
||||
def normalize_whitespace(s):
|
||||
return re.sub(r"\s+", " ", s)
|
||||
|
|
|
@ -108,6 +108,7 @@ class Doc:
|
|||
kb_id: Union[int, str] = ...,
|
||||
vector: Optional[Floats1d] = ...,
|
||||
alignment_mode: str = ...,
|
||||
span_id: Union[int, str] = ...,
|
||||
) -> Span: ...
|
||||
def similarity(self, other: Union[Doc, Span, Token, Lexeme]) -> float: ...
|
||||
@property
|
||||
|
|
|
@ -528,9 +528,9 @@ cdef class Doc:
|
|||
doc (Doc): The parent document.
|
||||
start_idx (int): The index of the first character of the span.
|
||||
end_idx (int): The index of the first character after the span.
|
||||
label (uint64 or string): A label to attach to the Span, e.g. for
|
||||
label (Union[int, str]): A label to attach to the Span, e.g. for
|
||||
named entities.
|
||||
kb_id (uint64 or string): An ID from a KB to capture the meaning of a
|
||||
kb_id (Union[int, str]): An ID from a KB to capture the meaning of a
|
||||
named entity.
|
||||
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
|
||||
the span.
|
||||
|
@ -539,6 +539,7 @@ cdef class Doc:
|
|||
with token boundaries), "contract" (span of all tokens completely
|
||||
within the character span), "expand" (span of all tokens at least
|
||||
partially covered by the character span). Defaults to "strict".
|
||||
span_id (Union[int, str]): An identifier to associate with the span.
|
||||
RETURNS (Span): The newly constructed object.
|
||||
|
||||
DOCS: https://spacy.io/api/doc#char_span
|
||||
|
|
|
@ -96,6 +96,9 @@ class Span:
|
|||
label: Union[int, str] = ...,
|
||||
kb_id: Union[int, str] = ...,
|
||||
vector: Optional[Floats1d] = ...,
|
||||
id: Union[int, str] = ...,
|
||||
alignment_mode: str = ...,
|
||||
span_id: Union[int, str] = ...,
|
||||
) -> Span: ...
|
||||
@property
|
||||
def conjuncts(self) -> Tuple[Token]: ...
|
||||
|
|
|
@ -382,7 +382,7 @@ cdef class Span:
|
|||
result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||||
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
|
||||
return result.item()
|
||||
|
||||
|
||||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||||
"""Given a list of M attribute IDs, export the tokens to a numpy
|
||||
`ndarray` of shape `(N, M)`, where `N` is the length of the document.
|
||||
|
@ -656,22 +656,29 @@ cdef class Span:
|
|||
else:
|
||||
return self.doc[root]
|
||||
|
||||
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, id=0):
|
||||
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, id=0, alignment_mode="strict", span_id=0):
|
||||
"""Create a `Span` object from the slice `span.text[start : end]`.
|
||||
|
||||
start (int): The index of the first character of the span.
|
||||
end (int): The index of the first character after the span.
|
||||
label (uint64 or string): A label to attach to the Span, e.g. for
|
||||
label (Union[int, str]): A label to attach to the Span, e.g. for
|
||||
named entities.
|
||||
kb_id (uint64 or string): An ID from a KB to capture the meaning of a named entity.
|
||||
kb_id (Union[int, str]): An ID from a KB to capture the meaning of a named entity.
|
||||
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
|
||||
the span.
|
||||
id (Union[int, str]): Unused.
|
||||
alignment_mode (str): How character indices are aligned to token
|
||||
boundaries. Options: "strict" (character indices must be aligned
|
||||
with token boundaries), "contract" (span of all tokens completely
|
||||
within the character span), "expand" (span of all tokens at least
|
||||
partially covered by the character span). Defaults to "strict".
|
||||
span_id (Union[int, str]): An identifier to associate with the span.
|
||||
RETURNS (Span): The newly constructed object.
|
||||
"""
|
||||
cdef SpanC* span_c = self.span_c()
|
||||
start_idx += span_c.start_char
|
||||
end_idx += span_c.start_char
|
||||
return self.doc.char_span(start_idx, end_idx, label=label, kb_id=kb_id, vector=vector)
|
||||
return self.doc.char_span(start_idx, end_idx, label=label, kb_id=kb_id, vector=vector, alignment_mode=alignment_mode, span_id=span_id)
|
||||
|
||||
@property
|
||||
def conjuncts(self):
|
||||
|
|
|
@ -1410,12 +1410,13 @@ $ python -m spacy project assets [project_dir]
|
|||
> $ python -m spacy project assets [--sparse]
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
|
||||
| `--sparse`, `-S` | Enable [sparse checkout](https://git-scm.com/docs/git-sparse-checkout) to only check out and download what's needed. Requires Git v22.2+. ~~bool (flag)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Downloaded or copied assets defined in the `project.yml`. |
|
||||
| Name | Description |
|
||||
| ---------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
|
||||
| `--extra`, `-e` <Tag variant="new">3.3.1</Tag> | Download assets marked as "extra". Default false. ~~bool (flag)~~ |
|
||||
| `--sparse`, `-S` | Enable [sparse checkout](https://git-scm.com/docs/git-sparse-checkout) to only check out and download what's needed. Requires Git v22.2+. ~~bool (flag)~~ |
|
||||
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
|
||||
| **CREATES** | Downloaded or copied assets defined in the `project.yml`. |
|
||||
|
||||
### project run {id="project-run",tag="command"}
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ Construct a `Doc` object. The most common way to get a `Doc` object is via the
|
|||
| `words` | A list of strings or integer hash values to add to the document as words. ~~Optional[List[Union[str,int]]]~~ |
|
||||
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
|
||||
| `user_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
|
||||
| `tags` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `pos` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `morphs` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
|
@ -209,15 +209,16 @@ alignment mode `"strict".
|
|||
> assert span.text == "New York"
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `start` | The index of the first character of the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||||
| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
| `alignment_mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
|
||||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||||
| Name | Description |
|
||||
| ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `start` | The index of the first character of the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||||
| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
| `alignment_mode` | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
|
||||
| `span_id` <Tag variant="new">3.3.1</Tag> | An identifier to associate with the span. ~~Union[int, str]~~ |
|
||||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||||
|
||||
## Doc.set_ents {id="set_ents",tag="method",version="3"}
|
||||
|
||||
|
|
|
@ -186,14 +186,17 @@ the character indices don't map to a valid span.
|
|||
> assert span.text == "New York"
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------------------------------------------------------------- |
|
||||
| `start` | The index of the first character of the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||||
| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||||
| Name | Description |
|
||||
| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `start` | The index of the first character of the span. ~~int~~ |
|
||||
| `end` | The index of the last character after the span. ~~int~~ |
|
||||
| `label` | A label to attach to the span, e.g. for named entities. ~~Union[int, str]~~ |
|
||||
| `kb_id` | An ID from a knowledge base to capture the meaning of a named entity. ~~Union[int, str]~~ |
|
||||
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
|
||||
| `id` | Unused. ~~Union[int, str]~~ |
|
||||
| `alignment_mode` <Tag variant="new">3.5.1</Tag> | How character indices snap to token boundaries. Options: `"strict"` (no snapping), `"contract"` (span of all tokens completely within the character span), `"expand"` (span of all tokens at least partially covered by the character span). Defaults to `"strict"`. ~~str~~ |
|
||||
| `span_id` <Tag variant="new">3.5.1</Tag> | An identifier to associate with the span. ~~Union[int, str]~~ |
|
||||
| **RETURNS** | The newly constructed object or `None`. ~~Optional[Span]~~ |
|
||||
|
||||
## Span.similarity {id="similarity",tag="method",model="vectors"}
|
||||
|
||||
|
|
|
@ -21,8 +21,8 @@ menu:
|
|||
## Package naming conventions {id="conventions"}
|
||||
|
||||
In general, spaCy expects all pipeline packages to follow the naming convention
|
||||
of `[lang]\_[name]`. For spaCy's pipelines, we also chose to divide the name
|
||||
into three components:
|
||||
of `[lang]_[name]`. For spaCy's pipelines, we also chose to divide the name into
|
||||
three components:
|
||||
|
||||
1. **Type:** Capabilities (e.g. `core` for general-purpose pipeline with
|
||||
tagging, parsing, lemmatization and named entity recognition, or `dep` for
|
||||
|
|
|
@ -155,6 +155,21 @@ An error is now raised when unsupported values are given as input to train a
|
|||
`textcat` or `textcat_multilabel` model - ensure that values are `0.0` or `1.0`
|
||||
as explained in the [docs](/api/textcategorizer#assigned-attributes).
|
||||
|
||||
### Using the default knowledge base
|
||||
|
||||
As `KnowledgeBase` is now an abstract class, you should call the constructor of
|
||||
the new `InMemoryLookupKB` instead when you want to use spaCy's default KB
|
||||
implementation:
|
||||
|
||||
```diff
|
||||
- kb = KnowledgeBase()
|
||||
+ kb = InMemoryLookupKB()
|
||||
```
|
||||
|
||||
If you've written a custom KB that inherits from `KnowledgeBase`, you'll need to
|
||||
implement its abstract methods, or alternatively inherit from `InMemoryLookupKB`
|
||||
instead.
|
||||
|
||||
### Updated scorers for tokenization and textcat {id="scores"}
|
||||
|
||||
We fixed a bug that inflated the `token_acc` scores in v3.0-v3.4. The reported
|
||||
|
|
Loading…
Reference in New Issue
Block a user