mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-22 10:02:01 +03:00
Convert Candidate from Cython to Python class.
This commit is contained in:
parent
df4c069a13
commit
cd98ab4e95
1
setup.py
1
setup.py
|
@ -30,7 +30,6 @@ MOD_NAMES = [
|
|||
"spacy.lexeme",
|
||||
"spacy.vocab",
|
||||
"spacy.attrs",
|
||||
"spacy.kb.candidate",
|
||||
"spacy.kb.kb",
|
||||
"spacy.kb.kb_in_memory",
|
||||
"spacy.ml.tb_framework",
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
from .kb import KnowledgeBase
|
||||
from .kb_in_memory import InMemoryLookupKB
|
||||
from .candidate import Candidate, get_candidates, get_candidates_batch
|
||||
from .candidate import Candidate
|
||||
|
||||
__all__ = ["KnowledgeBase", "InMemoryLookupKB", "Candidate"]
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
from .kb cimport KnowledgeBase
|
||||
from libcpp.vector cimport vector
|
||||
from ..typedefs cimport hash_t
|
||||
|
||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
|
||||
cdef class Candidate:
|
||||
cdef readonly KnowledgeBase kb
|
||||
cdef hash_t entity_hash
|
||||
cdef float entity_freq
|
||||
cdef vector[float] entity_vector
|
||||
cdef hash_t alias_hash
|
||||
cdef float prior_prob
|
109
spacy/kb/candidate.py
Normal file
109
spacy/kb/candidate.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import abc
|
||||
from typing import List, Union, Callable
|
||||
|
||||
|
||||
class BaseCandidate(abc.ABC):
|
||||
"""A `BaseCandidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity_id` from a Knowledge Base. This will be used as input for the entity_id linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (alias, entity_id) pair is assigned a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/kb/#candidate-init
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, mention: str, entity_id: Union[int, str], entity_vector: List[float]
|
||||
):
|
||||
"""Create new instance of `Candidate`. Note: has to be a sub-class, otherwise error will be raised.
|
||||
mention (str): Mention text for this candidate.
|
||||
entity_id (Union[int, str]): Unique entity ID.
|
||||
entity_vector (List[float]): Entity embedding.
|
||||
"""
|
||||
self._mention = mention
|
||||
self._entity_id = entity_id
|
||||
self._entity_vector = entity_vector
|
||||
|
||||
@property
|
||||
def entity(self) -> Union[int, str]:
|
||||
"""RETURNS (Union[int, str]): Entity ID."""
|
||||
return self._entity_id
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def entity_(self) -> str:
|
||||
"""RETURNS (str): Entity name."""
|
||||
|
||||
@property
|
||||
def mention(self) -> str:
|
||||
"""RETURNS (str): Mention."""
|
||||
return self._mention
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> List[float]:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self._entity_vector
|
||||
|
||||
|
||||
class Candidate(BaseCandidate):
|
||||
"""`Candidate` for InMemoryLookupKBCandidate."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
retrieve_string_from_hash: Callable[[int], str],
|
||||
entity_hash: int,
|
||||
entity_freq: int,
|
||||
entity_vector: List[float],
|
||||
alias_hash: int,
|
||||
prior_prob: float,
|
||||
):
|
||||
"""
|
||||
retrieve_string_from_hash (Callable[[int], str]): Callable retrieveing entity name from provided entity/vocab
|
||||
hash.
|
||||
entity_hash (str): Hashed entity name /ID.
|
||||
entity_freq (int): Entity frequency in KB corpus.
|
||||
entity_vector (List[float]): Entity embedding.
|
||||
alias_hash (int): Hashed alias.
|
||||
prior_prob (float): Prior probability of entity for this mention - i.e. the probability that, independent of
|
||||
the context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In
|
||||
cases in which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus
|
||||
doesn't) it might be better to eschew this information and always supply the same value.
|
||||
"""
|
||||
super().__init__(
|
||||
mention=retrieve_string_from_hash(alias_hash),
|
||||
entity_id=entity_hash,
|
||||
entity_vector=entity_vector,
|
||||
)
|
||||
self._retrieve_string_from_hash = retrieve_string_from_hash
|
||||
self._entity_hash = entity_hash
|
||||
self._entity_freq = entity_freq
|
||||
self._alias_hash = alias_hash
|
||||
self._prior_prob = prior_prob
|
||||
|
||||
@property
|
||||
def entity(self) -> int:
|
||||
"""RETURNS (int): hash of the entity_id's KB ID/name"""
|
||||
return self._entity_hash
|
||||
|
||||
@property
|
||||
def entity_(self) -> str:
|
||||
"""RETURNS (str): ID/name of this entity_id in the KB"""
|
||||
return self._retrieve_string_from_hash(self._entity_hash)
|
||||
|
||||
@property
|
||||
def alias(self) -> int:
|
||||
"""RETURNS (int): hash of the alias"""
|
||||
return self._alias_hash
|
||||
|
||||
@property
|
||||
def alias_(self) -> str:
|
||||
"""RETURNS (str): ID of the original alias"""
|
||||
return self._retrieve_string_from_hash(self._alias_hash)
|
||||
|
||||
@property
|
||||
def entity_freq(self) -> float:
|
||||
return self._entity_freq
|
||||
|
||||
@property
|
||||
def prior_prob(self) -> float:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self._prior_prob
|
|
@ -1,74 +0,0 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
|
||||
from typing import Iterable
|
||||
from .kb cimport KnowledgeBase
|
||||
from ..tokens import Span
|
||||
|
||||
cdef class Candidate:
|
||||
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (alias, entity) pair is assigned a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/kb/#candidate-init
|
||||
"""
|
||||
|
||||
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
|
||||
self.kb = kb
|
||||
self.entity_hash = entity_hash
|
||||
self.entity_freq = entity_freq
|
||||
self.entity_vector = entity_vector
|
||||
self.alias_hash = alias_hash
|
||||
self.prior_prob = prior_prob
|
||||
|
||||
@property
|
||||
def entity(self) -> int:
|
||||
"""RETURNS (uint64): hash of the entity's KB ID/name"""
|
||||
return self.entity_hash
|
||||
|
||||
@property
|
||||
def entity_(self) -> str:
|
||||
"""RETURNS (str): ID/name of this entity in the KB"""
|
||||
return self.kb.vocab.strings[self.entity_hash]
|
||||
|
||||
@property
|
||||
def alias(self) -> int:
|
||||
"""RETURNS (uint64): hash of the alias"""
|
||||
return self.alias_hash
|
||||
|
||||
@property
|
||||
def alias_(self) -> str:
|
||||
"""RETURNS (str): ID of the original alias"""
|
||||
return self.kb.vocab.strings[self.alias_hash]
|
||||
|
||||
@property
|
||||
def entity_freq(self) -> float:
|
||||
return self.entity_freq
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> Iterable[float]:
|
||||
return self.entity_vector
|
||||
|
||||
@property
|
||||
def prior_prob(self) -> float:
|
||||
return self.prior_prob
|
||||
|
||||
|
||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
|
||||
"""
|
||||
Return candidate entities for a given mention and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Span): Entity mention for which to identify candidates.
|
||||
RETURNS (Iterable[Candidate]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates(mention)
|
||||
|
||||
|
||||
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
|
||||
"""
|
||||
Return candidate entities for the given mentions and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Iterable[Span]): Entity mentions for which to identify candidates.
|
||||
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates_batch(mentions)
|
|
@ -238,14 +238,18 @@ cdef class InMemoryLookupKB(KnowledgeBase):
|
|||
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
||||
alias_entry = self._aliases_table[alias_index]
|
||||
|
||||
return [Candidate(kb=self,
|
||||
entity_hash=self._entries[entry_index].entity_hash,
|
||||
entity_freq=self._entries[entry_index].freq,
|
||||
entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
|
||||
alias_hash=alias_hash,
|
||||
prior_prob=prior_prob)
|
||||
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
|
||||
if entry_index != 0]
|
||||
return [
|
||||
Candidate(
|
||||
retrieve_string_from_hash=self.vocab.strings.__getitem__,
|
||||
entity_hash=self._entries[entry_index].entity_hash,
|
||||
entity_freq=self._entries[entry_index].freq,
|
||||
entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
|
||||
alias_hash=alias_hash,
|
||||
prior_prob=prior_prob
|
||||
)
|
||||
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
|
||||
if entry_index != 0
|
||||
]
|
||||
|
||||
def get_vector(self, str entity):
|
||||
cdef hash_t entity_hash = self.vocab.strings[entity]
|
||||
|
|
|
@ -6,7 +6,7 @@ from thinc.api import Model, Maxout, Linear, tuplify, Ragged
|
|||
|
||||
from ...util import registry
|
||||
from ...kb import KnowledgeBase, InMemoryLookupKB
|
||||
from ...kb import Candidate, get_candidates, get_candidates_batch
|
||||
from ...kb import Candidate
|
||||
from ...vocab import Vocab
|
||||
from ...tokens import Span, Doc
|
||||
from ..extract_spans import extract_spans
|
||||
|
@ -109,3 +109,23 @@ def create_candidates_batch() -> Callable[
|
|||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||
]:
|
||||
return get_candidates_batch
|
||||
|
||||
|
||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
|
||||
"""
|
||||
Return candidate entities for a given mention and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Span): Entity mention for which to identify candidates.
|
||||
RETURNS (Iterable[Candidate]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates(mention)
|
||||
|
||||
|
||||
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
|
||||
"""
|
||||
Return candidate entities for the given mentions and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Iterable[Span]): Entity mentions for which to identify candidates.
|
||||
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates_batch(mentions)
|
||||
|
|
|
@ -7,10 +7,10 @@ from thinc.types import Ragged
|
|||
from spacy import registry, util
|
||||
from spacy.attrs import ENT_KB_ID
|
||||
from spacy.compat import pickle
|
||||
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
|
||||
from spacy.kb import Candidate, InMemoryLookupKB, KnowledgeBase
|
||||
from spacy.lang.en import English
|
||||
from spacy.ml import load_kb
|
||||
from spacy.ml.models.entity_linker import build_span_maker
|
||||
from spacy.ml.models.entity_linker import build_span_maker, get_candidates
|
||||
from spacy.pipeline import EntityLinker, TrainablePipe
|
||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||
from spacy.scorer import Scorer
|
||||
|
|
Loading…
Reference in New Issue
Block a user