mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Convert Candidate from Cython to Python class.
This commit is contained in:
		
							parent
							
								
									df4c069a13
								
							
						
					
					
						commit
						cd98ab4e95
					
				
							
								
								
									
										1
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										1
									
								
								setup.py
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -30,7 +30,6 @@ MOD_NAMES = [
 | 
			
		|||
    "spacy.lexeme",
 | 
			
		||||
    "spacy.vocab",
 | 
			
		||||
    "spacy.attrs",
 | 
			
		||||
    "spacy.kb.candidate",
 | 
			
		||||
    "spacy.kb.kb",
 | 
			
		||||
    "spacy.kb.kb_in_memory",
 | 
			
		||||
    "spacy.ml.tb_framework",
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,3 +1,5 @@
 | 
			
		|||
from .kb import KnowledgeBase
 | 
			
		||||
from .kb_in_memory import InMemoryLookupKB
 | 
			
		||||
from .candidate import Candidate, get_candidates, get_candidates_batch
 | 
			
		||||
from .candidate import Candidate
 | 
			
		||||
 | 
			
		||||
__all__ = ["KnowledgeBase", "InMemoryLookupKB", "Candidate"]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,12 +0,0 @@
 | 
			
		|||
from .kb cimport KnowledgeBase
 | 
			
		||||
from libcpp.vector cimport vector
 | 
			
		||||
from ..typedefs cimport hash_t
 | 
			
		||||
 | 
			
		||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
 | 
			
		||||
cdef class Candidate:
 | 
			
		||||
    cdef readonly KnowledgeBase kb
 | 
			
		||||
    cdef hash_t entity_hash
 | 
			
		||||
    cdef float entity_freq
 | 
			
		||||
    cdef vector[float] entity_vector
 | 
			
		||||
    cdef hash_t alias_hash
 | 
			
		||||
    cdef float prior_prob
 | 
			
		||||
							
								
								
									
										109
									
								
								spacy/kb/candidate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										109
									
								
								spacy/kb/candidate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,109 @@
 | 
			
		|||
import abc
 | 
			
		||||
from typing import List, Union, Callable
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BaseCandidate(abc.ABC):
 | 
			
		||||
    """A `BaseCandidate` object refers to a textual mention (`alias`) that may or may not be resolved
 | 
			
		||||
    to a specific `entity_id` from a Knowledge Base. This will be used as input for the entity_id linking
 | 
			
		||||
    algorithm which will disambiguate the various candidates to the correct one.
 | 
			
		||||
    Each candidate (alias, entity_id) pair is assigned a certain prior probability.
 | 
			
		||||
 | 
			
		||||
    DOCS: https://spacy.io/api/kb/#candidate-init
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self, mention: str, entity_id: Union[int, str], entity_vector: List[float]
 | 
			
		||||
    ):
 | 
			
		||||
        """Create new instance of `Candidate`. Note: has to be a sub-class, otherwise error will be raised.
 | 
			
		||||
        mention (str): Mention text for this candidate.
 | 
			
		||||
        entity_id (Union[int, str]): Unique entity ID.
 | 
			
		||||
        entity_vector (List[float]): Entity embedding.
 | 
			
		||||
        """
 | 
			
		||||
        self._mention = mention
 | 
			
		||||
        self._entity_id = entity_id
 | 
			
		||||
        self._entity_vector = entity_vector
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity(self) -> Union[int, str]:
 | 
			
		||||
        """RETURNS (Union[int, str]): Entity ID."""
 | 
			
		||||
        return self._entity_id
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    @abc.abstractmethod
 | 
			
		||||
    def entity_(self) -> str:
 | 
			
		||||
        """RETURNS (str): Entity name."""
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def mention(self) -> str:
 | 
			
		||||
        """RETURNS (str): Mention."""
 | 
			
		||||
        return self._mention
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_vector(self) -> List[float]:
 | 
			
		||||
        """RETURNS (List[float]): Entity vector."""
 | 
			
		||||
        return self._entity_vector
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Candidate(BaseCandidate):
 | 
			
		||||
    """`Candidate` for InMemoryLookupKBCandidate."""
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        retrieve_string_from_hash: Callable[[int], str],
 | 
			
		||||
        entity_hash: int,
 | 
			
		||||
        entity_freq: int,
 | 
			
		||||
        entity_vector: List[float],
 | 
			
		||||
        alias_hash: int,
 | 
			
		||||
        prior_prob: float,
 | 
			
		||||
    ):
 | 
			
		||||
        """
 | 
			
		||||
        retrieve_string_from_hash (Callable[[int], str]): Callable retrieveing entity name from provided entity/vocab
 | 
			
		||||
            hash.
 | 
			
		||||
        entity_hash (str): Hashed entity name /ID.
 | 
			
		||||
        entity_freq (int): Entity frequency in KB corpus.
 | 
			
		||||
        entity_vector (List[float]): Entity embedding.
 | 
			
		||||
        alias_hash (int): Hashed alias.
 | 
			
		||||
        prior_prob (float): Prior probability of entity for this mention - i.e. the probability that, independent of
 | 
			
		||||
            the context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In
 | 
			
		||||
            cases in which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus
 | 
			
		||||
            doesn't) it might be better to eschew this information and always supply the same value.
 | 
			
		||||
        """
 | 
			
		||||
        super().__init__(
 | 
			
		||||
            mention=retrieve_string_from_hash(alias_hash),
 | 
			
		||||
            entity_id=entity_hash,
 | 
			
		||||
            entity_vector=entity_vector,
 | 
			
		||||
        )
 | 
			
		||||
        self._retrieve_string_from_hash = retrieve_string_from_hash
 | 
			
		||||
        self._entity_hash = entity_hash
 | 
			
		||||
        self._entity_freq = entity_freq
 | 
			
		||||
        self._alias_hash = alias_hash
 | 
			
		||||
        self._prior_prob = prior_prob
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity(self) -> int:
 | 
			
		||||
        """RETURNS (int): hash of the entity_id's KB ID/name"""
 | 
			
		||||
        return self._entity_hash
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_(self) -> str:
 | 
			
		||||
        """RETURNS (str): ID/name of this entity_id in the KB"""
 | 
			
		||||
        return self._retrieve_string_from_hash(self._entity_hash)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def alias(self) -> int:
 | 
			
		||||
        """RETURNS (int): hash of the alias"""
 | 
			
		||||
        return self._alias_hash
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def alias_(self) -> str:
 | 
			
		||||
        """RETURNS (str): ID of the original alias"""
 | 
			
		||||
        return self._retrieve_string_from_hash(self._alias_hash)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_freq(self) -> float:
 | 
			
		||||
        return self._entity_freq
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prior_prob(self) -> float:
 | 
			
		||||
        """RETURNS (List[float]): Entity vector."""
 | 
			
		||||
        return self._prior_prob
 | 
			
		||||
| 
						 | 
				
			
			@ -1,74 +0,0 @@
 | 
			
		|||
# cython: infer_types=True, profile=True
 | 
			
		||||
 | 
			
		||||
from typing import Iterable
 | 
			
		||||
from .kb cimport KnowledgeBase
 | 
			
		||||
from ..tokens import Span
 | 
			
		||||
 | 
			
		||||
cdef class Candidate:
 | 
			
		||||
    """A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
 | 
			
		||||
    to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
 | 
			
		||||
    algorithm which will disambiguate the various candidates to the correct one.
 | 
			
		||||
    Each candidate (alias, entity) pair is assigned a certain prior probability.
 | 
			
		||||
 | 
			
		||||
    DOCS: https://spacy.io/api/kb/#candidate-init
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
 | 
			
		||||
        self.kb = kb
 | 
			
		||||
        self.entity_hash = entity_hash
 | 
			
		||||
        self.entity_freq = entity_freq
 | 
			
		||||
        self.entity_vector = entity_vector
 | 
			
		||||
        self.alias_hash = alias_hash
 | 
			
		||||
        self.prior_prob = prior_prob
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity(self) -> int:
 | 
			
		||||
        """RETURNS (uint64): hash of the entity's KB ID/name"""
 | 
			
		||||
        return self.entity_hash
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_(self) -> str:
 | 
			
		||||
        """RETURNS (str): ID/name of this entity in the KB"""
 | 
			
		||||
        return self.kb.vocab.strings[self.entity_hash]
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def alias(self) -> int:
 | 
			
		||||
        """RETURNS (uint64): hash of the alias"""
 | 
			
		||||
        return self.alias_hash
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def alias_(self) -> str:
 | 
			
		||||
        """RETURNS (str): ID of the original alias"""
 | 
			
		||||
        return self.kb.vocab.strings[self.alias_hash]
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_freq(self) -> float:
 | 
			
		||||
        return self.entity_freq
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def entity_vector(self) -> Iterable[float]:
 | 
			
		||||
        return self.entity_vector
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def prior_prob(self) -> float:
 | 
			
		||||
        return self.prior_prob
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
 | 
			
		||||
    """
 | 
			
		||||
    Return candidate entities for a given mention and fetching appropriate entries from the index.
 | 
			
		||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
			
		||||
    mention (Span): Entity mention for which to identify candidates.
 | 
			
		||||
    RETURNS (Iterable[Candidate]): Identified candidates.
 | 
			
		||||
    """
 | 
			
		||||
    return kb.get_candidates(mention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
 | 
			
		||||
    """
 | 
			
		||||
    Return candidate entities for the given mentions and fetching appropriate entries from the index.
 | 
			
		||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
			
		||||
    mention (Iterable[Span]): Entity mentions for which to identify candidates.
 | 
			
		||||
    RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
 | 
			
		||||
    """
 | 
			
		||||
    return kb.get_candidates_batch(mentions)
 | 
			
		||||
| 
						 | 
				
			
			@ -238,14 +238,18 @@ cdef class InMemoryLookupKB(KnowledgeBase):
 | 
			
		|||
        alias_index = <int64_t>self._alias_index.get(alias_hash)
 | 
			
		||||
        alias_entry = self._aliases_table[alias_index]
 | 
			
		||||
 | 
			
		||||
        return [Candidate(kb=self,
 | 
			
		||||
        return [
 | 
			
		||||
            Candidate(
 | 
			
		||||
                retrieve_string_from_hash=self.vocab.strings.__getitem__,
 | 
			
		||||
                entity_hash=self._entries[entry_index].entity_hash,
 | 
			
		||||
                entity_freq=self._entries[entry_index].freq,
 | 
			
		||||
                entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
 | 
			
		||||
                alias_hash=alias_hash,
 | 
			
		||||
                          prior_prob=prior_prob)
 | 
			
		||||
                prior_prob=prior_prob
 | 
			
		||||
            )
 | 
			
		||||
            for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
 | 
			
		||||
                if entry_index != 0]
 | 
			
		||||
            if entry_index != 0
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
    def get_vector(self, str entity):
 | 
			
		||||
        cdef hash_t entity_hash = self.vocab.strings[entity]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,7 +6,7 @@ from thinc.api import Model, Maxout, Linear, tuplify, Ragged
 | 
			
		|||
 | 
			
		||||
from ...util import registry
 | 
			
		||||
from ...kb import KnowledgeBase, InMemoryLookupKB
 | 
			
		||||
from ...kb import Candidate, get_candidates, get_candidates_batch
 | 
			
		||||
from ...kb import Candidate
 | 
			
		||||
from ...vocab import Vocab
 | 
			
		||||
from ...tokens import Span, Doc
 | 
			
		||||
from ..extract_spans import extract_spans
 | 
			
		||||
| 
						 | 
				
			
			@ -109,3 +109,23 @@ def create_candidates_batch() -> Callable[
 | 
			
		|||
    [KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
 | 
			
		||||
]:
 | 
			
		||||
    return get_candidates_batch
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
 | 
			
		||||
    """
 | 
			
		||||
    Return candidate entities for a given mention and fetching appropriate entries from the index.
 | 
			
		||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
			
		||||
    mention (Span): Entity mention for which to identify candidates.
 | 
			
		||||
    RETURNS (Iterable[Candidate]): Identified candidates.
 | 
			
		||||
    """
 | 
			
		||||
    return kb.get_candidates(mention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
 | 
			
		||||
    """
 | 
			
		||||
    Return candidate entities for the given mentions and fetching appropriate entries from the index.
 | 
			
		||||
    kb (KnowledgeBase): Knowledge base to query.
 | 
			
		||||
    mention (Iterable[Span]): Entity mentions for which to identify candidates.
 | 
			
		||||
    RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
 | 
			
		||||
    """
 | 
			
		||||
    return kb.get_candidates_batch(mentions)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -7,10 +7,10 @@ from thinc.types import Ragged
 | 
			
		|||
from spacy import registry, util
 | 
			
		||||
from spacy.attrs import ENT_KB_ID
 | 
			
		||||
from spacy.compat import pickle
 | 
			
		||||
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
 | 
			
		||||
from spacy.kb import Candidate, InMemoryLookupKB, KnowledgeBase
 | 
			
		||||
from spacy.lang.en import English
 | 
			
		||||
from spacy.ml import load_kb
 | 
			
		||||
from spacy.ml.models.entity_linker import build_span_maker
 | 
			
		||||
from spacy.ml.models.entity_linker import build_span_maker, get_candidates
 | 
			
		||||
from spacy.pipeline import EntityLinker, TrainablePipe
 | 
			
		||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
			
		||||
from spacy.scorer import Scorer
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user