mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
using Tok2Vec instead
This commit is contained in:
parent
abf9af81c9
commit
cfc27d7ff9
|
@ -11,7 +11,7 @@ from thinc.neural._classes.convolution import ExtractWindow
|
|||
|
||||
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
|
||||
|
||||
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
|
||||
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic, Tok2Vec
|
||||
|
||||
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
|
||||
from thinc.v2v import Model, Maxout, Affine, ReLu
|
||||
|
@ -39,15 +39,15 @@ class EL_Model:
|
|||
DOC_CUTOFF = 300 # number of characters from the doc context
|
||||
INPUT_DIM = 300 # dimension of pre-trained vectors
|
||||
|
||||
HIDDEN_1_WIDTH = 32 # 10
|
||||
HIDDEN_2_WIDTH = 32 # 6
|
||||
# HIDDEN_1_WIDTH = 32 # 10
|
||||
# HIDDEN_2_WIDTH = 32 # 6
|
||||
DESC_WIDTH = 64 # 4
|
||||
ARTICLE_WIDTH = 64 # 8
|
||||
SENT_WIDTH = 64
|
||||
|
||||
DROP = 0.1
|
||||
LEARN_RATE = 0.01
|
||||
EPOCHS = 10
|
||||
LEARN_RATE = 0.001
|
||||
EPOCHS = 20
|
||||
|
||||
name = "entity_linker"
|
||||
|
||||
|
@ -56,12 +56,9 @@ class EL_Model:
|
|||
self.nlp = nlp
|
||||
self.kb = kb
|
||||
|
||||
self._build_cnn(in_width=self.INPUT_DIM,
|
||||
desc_width=self.DESC_WIDTH,
|
||||
self._build_cnn(desc_width=self.DESC_WIDTH,
|
||||
article_width=self.ARTICLE_WIDTH,
|
||||
sent_width=self.SENT_WIDTH,
|
||||
hidden_1_width=self.HIDDEN_1_WIDTH,
|
||||
hidden_2_width=self.HIDDEN_2_WIDTH)
|
||||
sent_width=self.SENT_WIDTH)
|
||||
|
||||
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
|
||||
# raise errors instead of runtime warnings in case of int/float overflow
|
||||
|
@ -122,27 +119,29 @@ class EL_Model:
|
|||
print(" CUTOFF", self.CUTOFF)
|
||||
print(" DOC_CUTOFF", self.DOC_CUTOFF)
|
||||
print(" INPUT_DIM", self.INPUT_DIM)
|
||||
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
|
||||
# print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
|
||||
print(" DESC_WIDTH", self.DESC_WIDTH)
|
||||
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
|
||||
print(" SENT_WIDTH", self.SENT_WIDTH)
|
||||
print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
|
||||
# print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
|
||||
print(" DROP", self.DROP)
|
||||
print(" LEARNING RATE", self.LEARN_RATE)
|
||||
print(" UPSAMPLE", self.UPSAMPLE)
|
||||
print()
|
||||
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||
print_string="dev_random", calc_random=True)
|
||||
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||
print_string="dev_pre", avg=True)
|
||||
print()
|
||||
|
||||
processed = 0
|
||||
for i in range(self.EPOCHS):
|
||||
print("EPOCH", i)
|
||||
shuffle(train_ent)
|
||||
|
||||
start = 0
|
||||
stop = min(self.BATCH_SIZE, len(train_ent))
|
||||
processed = 0
|
||||
|
||||
while start < len(train_ent):
|
||||
next_batch = train_ent[start:stop]
|
||||
|
@ -153,17 +152,22 @@ class EL_Model:
|
|||
sent_texts = [train_sent_texts[train_sent[e]] for e in next_batch]
|
||||
|
||||
self.update(entities=next_batch, golds=golds, descs=descs, art_texts=article_texts, sent_texts=sent_texts)
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||
print_string="dev_inter", avg=True)
|
||||
|
||||
processed += len(next_batch)
|
||||
|
||||
start = start + self.BATCH_SIZE
|
||||
stop = min(stop + self.BATCH_SIZE, len(train_ent))
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Trained on", processed, "entities in total")
|
||||
if self.PRINT_TRAIN:
|
||||
self._test_dev(train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts,
|
||||
print_string="train_inter_epoch " + str(i), avg=True)
|
||||
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||
print_string="dev_inter_epoch " + str(i), avg=True)
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Trained on", processed, "entities across", self.EPOCHS, "epochs")
|
||||
|
||||
def _test_dev(self, entities, gold_by_entity, desc_by_entity, art_by_entity, art_texts, sent_by_entity, sent_texts,
|
||||
print_string, avg=True, calc_random=False):
|
||||
|
@ -224,11 +228,11 @@ class EL_Model:
|
|||
else:
|
||||
return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for _ in entities]
|
||||
|
||||
def _build_cnn(self, in_width, desc_width, article_width, sent_width, hidden_1_width, hidden_2_width):
|
||||
def _build_cnn_depr(self, embed_width, desc_width, article_width, sent_width, hidden_1_width, hidden_2_width):
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
self.desc_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=desc_width)
|
||||
self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width)
|
||||
self.sent_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=sent_width)
|
||||
self.desc_encoder = self._encoder_depr(in_width=embed_width, hidden_with=hidden_1_width, end_width=desc_width)
|
||||
self.article_encoder = self._encoder_depr(in_width=embed_width, hidden_with=hidden_1_width, end_width=article_width)
|
||||
self.sent_encoder = self._encoder_depr(in_width=embed_width, hidden_with=hidden_1_width, end_width=sent_width)
|
||||
|
||||
in_width = article_width + sent_width + desc_width
|
||||
out_width = hidden_2_width
|
||||
|
@ -238,8 +242,28 @@ class EL_Model:
|
|||
>> Affine(1, out_width) \
|
||||
>> logistic
|
||||
|
||||
def _build_cnn(self, desc_width, article_width, sent_width):
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
self.desc_encoder = self._encoder(width=desc_width)
|
||||
self.article_encoder = self._encoder(width=article_width)
|
||||
self.sent_encoder = self._encoder(width=sent_width)
|
||||
|
||||
in_width = desc_width + article_width + sent_width
|
||||
|
||||
output_layer = (
|
||||
zero_init(Affine(1, in_width, drop_factor=0.0)) >> logistic
|
||||
)
|
||||
self.model = output_layer
|
||||
self.model.nO = 1
|
||||
|
||||
def _encoder(self, width):
|
||||
tok2vec = Tok2Vec(width=width, embed_size=2000, pretrained_vectors=self.nlp.vocab.vectors.name, cnn_maxout_pieces=3,
|
||||
subword_features=True, conv_depth=4, bilstm_depth=0)
|
||||
|
||||
return tok2vec >> flatten_add_lengths >> Pooling(mean_pool)
|
||||
|
||||
@staticmethod
|
||||
def _encoder(in_width, hidden_with, end_width):
|
||||
def _encoder_depr(in_width, hidden_with, end_width):
|
||||
conv_depth = 2
|
||||
cnn_maxout_pieces = 3
|
||||
|
||||
|
@ -263,12 +287,19 @@ class EL_Model:
|
|||
def _begin_training(self):
|
||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||
self.sgd_article.learn_rate = self.LEARN_RATE
|
||||
self.sgd_article.L2 = 0
|
||||
|
||||
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
|
||||
self.sgd_sent.learn_rate = self.LEARN_RATE
|
||||
self.sgd_sent.L2 = 0
|
||||
|
||||
self.sgd_desc = create_default_optimizer(self.desc_encoder.ops)
|
||||
self.sgd_desc.learn_rate = self.LEARN_RATE
|
||||
self.sgd_desc.L2 = 0
|
||||
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
self.sgd.learn_rate = self.LEARN_RATE
|
||||
self.sgd.L2 = 0
|
||||
|
||||
@staticmethod
|
||||
def get_loss(predictions, golds):
|
||||
|
@ -300,9 +331,6 @@ class EL_Model:
|
|||
|
||||
loss, gradient = self.get_loss(predictions, golds)
|
||||
|
||||
if self.PRINT_TRAIN:
|
||||
print("loss train", round(loss, 5))
|
||||
|
||||
gradient = float(gradient)
|
||||
# print("gradient", gradient)
|
||||
# print("loss", loss)
|
||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
|||
print("STEP 6: training", datetime.datetime.now())
|
||||
my_nlp = spacy.load('en_core_web_md')
|
||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=20, devlimit=20)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=10000, devlimit=1000)
|
||||
print()
|
||||
|
||||
# STEP 7: apply the EL algorithm on the dev dataset
|
||||
|
|
Loading…
Reference in New Issue
Block a user