mirror of
https://github.com/explosion/spaCy.git
synced 2025-03-12 07:15:48 +03:00
Remove GoldCorpus
This commit is contained in:
parent
fd83551eb5
commit
cfd024536d
|
@ -1,222 +0,0 @@
|
|||
import random
|
||||
import shutil
|
||||
import tempfile
|
||||
import srsly
|
||||
from pathlib import Path
|
||||
import itertools
|
||||
from ..tokens import Doc
|
||||
from .. import util
|
||||
from ..errors import Errors, AlignmentError
|
||||
from .gold_io import read_json_file, json_to_annotations
|
||||
from .augment import make_orth_variants
|
||||
from .example import Example
|
||||
|
||||
|
||||
class GoldCorpus(object):
|
||||
"""An annotated corpus, using the JSON file format. Manages
|
||||
annotations for tagging, dependency parsing and NER.
|
||||
|
||||
DOCS: https://spacy.io/api/goldcorpus
|
||||
"""
|
||||
|
||||
def __init__(self, train, dev, gold_preproc=False, limit=None):
|
||||
"""Create a GoldCorpus.
|
||||
|
||||
train (str / Path): File or directory of training data.
|
||||
dev (str / Path): File or directory of development data.
|
||||
RETURNS (GoldCorpus): The newly created object.
|
||||
"""
|
||||
self.limit = limit
|
||||
if isinstance(train, str) or isinstance(train, Path):
|
||||
train = self.read_annotations(self.walk_corpus(train))
|
||||
dev = self.read_annotations(self.walk_corpus(dev))
|
||||
# Write temp directory with one doc per file, so we can shuffle and stream
|
||||
self.tmp_dir = Path(tempfile.mkdtemp())
|
||||
self.write_msgpack(self.tmp_dir / "train", train, limit=self.limit)
|
||||
self.write_msgpack(self.tmp_dir / "dev", dev, limit=self.limit)
|
||||
|
||||
def __del__(self):
|
||||
shutil.rmtree(self.tmp_dir)
|
||||
|
||||
@staticmethod
|
||||
def write_msgpack(directory, examples, limit=0):
|
||||
if not directory.exists():
|
||||
directory.mkdir()
|
||||
n = 0
|
||||
for i, ex_dict in enumerate(examples):
|
||||
text = ex_dict["text"]
|
||||
srsly.write_msgpack(directory / f"{i}.msg", (text, ex_dict))
|
||||
n += 1
|
||||
if limit and n >= limit:
|
||||
break
|
||||
|
||||
@staticmethod
|
||||
def walk_corpus(path):
|
||||
path = util.ensure_path(path)
|
||||
if not path.is_dir():
|
||||
return [path]
|
||||
paths = [path]
|
||||
locs = []
|
||||
seen = set()
|
||||
for path in paths:
|
||||
if str(path) in seen:
|
||||
continue
|
||||
seen.add(str(path))
|
||||
if path.parts[-1].startswith("."):
|
||||
continue
|
||||
elif path.is_dir():
|
||||
paths.extend(path.iterdir())
|
||||
elif path.parts[-1].endswith((".json", ".jsonl")):
|
||||
locs.append(path)
|
||||
return locs
|
||||
|
||||
@staticmethod
|
||||
def read_annotations(locs, limit=0):
|
||||
""" Yield training examples as example dicts """
|
||||
i = 0
|
||||
for loc in locs:
|
||||
loc = util.ensure_path(loc)
|
||||
file_name = loc.parts[-1]
|
||||
if file_name.endswith("json"):
|
||||
examples = read_json_file(loc)
|
||||
elif file_name.endswith("jsonl"):
|
||||
gold_tuples = srsly.read_jsonl(loc)
|
||||
first_gold_tuple = next(gold_tuples)
|
||||
gold_tuples = itertools.chain([first_gold_tuple], gold_tuples)
|
||||
# TODO: proper format checks with schemas
|
||||
if isinstance(first_gold_tuple, dict):
|
||||
if first_gold_tuple.get("paragraphs", None):
|
||||
examples = []
|
||||
for json_doc in gold_tuples:
|
||||
examples.extend(json_to_annotations(json_doc))
|
||||
elif first_gold_tuple.get("doc_annotation", None):
|
||||
examples = []
|
||||
for ex_dict in gold_tuples:
|
||||
doc = ex_dict.get("doc", None)
|
||||
if doc is None:
|
||||
doc = ex_dict.get("text", None)
|
||||
if not (
|
||||
doc is None
|
||||
or isinstance(doc, Doc)
|
||||
or isinstance(doc, str)
|
||||
):
|
||||
raise ValueError(Errors.E987.format(type=type(doc)))
|
||||
examples.append(ex_dict)
|
||||
|
||||
elif file_name.endswith("msg"):
|
||||
text, ex_dict = srsly.read_msgpack(loc)
|
||||
examples = [ex_dict]
|
||||
else:
|
||||
supported = ("json", "jsonl", "msg")
|
||||
raise ValueError(Errors.E124.format(path=loc, formats=supported))
|
||||
try:
|
||||
for example in examples:
|
||||
yield example
|
||||
i += 1
|
||||
if limit and i >= limit:
|
||||
return
|
||||
except KeyError as e:
|
||||
msg = "Missing key {}".format(e)
|
||||
raise KeyError(Errors.E996.format(file=file_name, msg=msg))
|
||||
except UnboundLocalError as e:
|
||||
msg = "Unexpected document structure"
|
||||
raise ValueError(Errors.E996.format(file=file_name, msg=msg))
|
||||
|
||||
@property
|
||||
def dev_annotations(self):
|
||||
locs = (self.tmp_dir / "dev").iterdir()
|
||||
yield from self.read_annotations(locs, limit=self.limit)
|
||||
|
||||
@property
|
||||
def train_annotations(self):
|
||||
locs = (self.tmp_dir / "train").iterdir()
|
||||
yield from self.read_annotations(locs, limit=self.limit)
|
||||
|
||||
def count_train(self):
|
||||
"""Returns count of words in train examples"""
|
||||
n = 0
|
||||
i = 0
|
||||
for eg_dict in self.train_annotations:
|
||||
n += len(eg_dict["token_annotation"]["words"])
|
||||
if self.limit and i >= self.limit:
|
||||
break
|
||||
i += 1
|
||||
return n
|
||||
|
||||
def train_dataset(
|
||||
self,
|
||||
nlp,
|
||||
gold_preproc=False,
|
||||
max_length=None,
|
||||
orth_variant_level=0.0,
|
||||
ignore_misaligned=False,
|
||||
):
|
||||
locs = list((self.tmp_dir / "train").iterdir())
|
||||
random.shuffle(locs)
|
||||
train_annotations = self.read_annotations(locs, limit=self.limit)
|
||||
examples = self.iter_examples(
|
||||
nlp,
|
||||
train_annotations,
|
||||
gold_preproc,
|
||||
max_length=max_length,
|
||||
orth_variant_level=orth_variant_level,
|
||||
make_projective=True,
|
||||
ignore_misaligned=ignore_misaligned,
|
||||
)
|
||||
yield from examples
|
||||
|
||||
def train_dataset_without_preprocessing(
|
||||
self, nlp, gold_preproc=False, ignore_misaligned=False
|
||||
):
|
||||
examples = self.iter_examples(
|
||||
nlp,
|
||||
self.train_annotations,
|
||||
gold_preproc=gold_preproc,
|
||||
ignore_misaligned=ignore_misaligned,
|
||||
)
|
||||
yield from examples
|
||||
|
||||
def dev_dataset(self, nlp, gold_preproc=False, ignore_misaligned=False):
|
||||
examples = self.iter_examples(
|
||||
nlp,
|
||||
self.dev_annotations,
|
||||
gold_preproc=gold_preproc,
|
||||
ignore_misaligned=ignore_misaligned,
|
||||
)
|
||||
yield from examples
|
||||
|
||||
@classmethod
|
||||
def iter_examples(
|
||||
cls,
|
||||
nlp,
|
||||
annotations,
|
||||
gold_preproc,
|
||||
max_length=None,
|
||||
orth_variant_level=0.0,
|
||||
make_projective=False,
|
||||
ignore_misaligned=False,
|
||||
):
|
||||
""" Setting gold_preproc will result in creating a doc per sentence """
|
||||
for eg_dict in annotations:
|
||||
token_annot = eg_dict.get("token_annotation", {})
|
||||
if eg_dict["text"]:
|
||||
doc = nlp.make_doc(eg_dict["text"])
|
||||
elif "words" in token_annot:
|
||||
doc = Doc(nlp.vocab, words=token_annot["words"])
|
||||
else:
|
||||
raise ValueError("Expecting either 'text' or token_annotation.words annotation")
|
||||
|
||||
if gold_preproc:
|
||||
variant_text, variant_token_annot = make_orth_variants(nlp, doc.text, token_annot, orth_variant_level)
|
||||
doc = nlp.make_doc(variant_text)
|
||||
eg_dict["token_annotation"] = variant_token_annot
|
||||
example = Example.from_dict(doc, eg_dict)
|
||||
examples = example.split_sents()
|
||||
|
||||
else:
|
||||
example = Example.from_dict(doc, eg_dict)
|
||||
examples = [example]
|
||||
|
||||
for eg in examples:
|
||||
if (not max_length) or len(eg.predicted) < max_length:
|
||||
yield eg
|
Loading…
Reference in New Issue
Block a user