Delete all the coref-hoi code

This commit is contained in:
Paul O'Leary McCann 2022-03-15 20:05:24 +09:00
parent abdc7d87af
commit d0ae2590db

View File

@ -11,457 +11,13 @@ from ...tokens import Doc
from ...util import registry from ...util import registry
from ..extract_spans import extract_spans from ..extract_spans import extract_spans
from .coref_util import get_candidate_mentions, select_non_crossing_spans, topk
@registry.architectures("spacy.Coref.v1")
def build_coref(
tok2vec: Model[List[Doc], List[Floats2d]],
get_mentions: Any = get_candidate_mentions,
hidden: int = 1000,
dropout: float = 0.3,
mention_limit: int = 3900,
# TODO this needs a better name. It limits the max mentions as a ratio of
# the token count.
mention_limit_ratio: float = 0.4,
max_span_width: int = 20,
antecedent_limit: int = 50,
):
dim = tok2vec.get_dim("nO") * 3
span_embedder = build_span_embedder(get_mentions, max_span_width)
with Model.define_operators({">>": chain, "&": tuplify, "+": add}):
mention_scorer = (
Linear(nI=dim, nO=hidden)
>> Relu(nI=hidden, nO=hidden)
>> Dropout(dropout)
>> Linear(nI=hidden, nO=hidden)
>> Relu(nI=hidden, nO=hidden)
>> Dropout(dropout)
>> Linear(nI=hidden, nO=1)
)
mention_scorer.initialize()
# TODO make feature_embed_size a param
feature_embed_size = 20
width_scorer = build_width_scorer(max_span_width, hidden, feature_embed_size)
bilinear = Linear(nI=dim, nO=dim) >> Dropout(dropout)
bilinear.initialize()
ms = (build_take_vecs() >> mention_scorer) + width_scorer
model = (
(tok2vec & noop())
>> span_embedder
>> (ms & noop())
>> build_coarse_pruner(mention_limit, mention_limit_ratio)
>> build_ant_scorer(bilinear, Dropout(dropout), antecedent_limit)
)
return model
@dataclass
class SpanEmbeddings:
indices: Ints2d # Array with 2 columns (for start and end index)
vectors: Ragged # Ragged[Floats2d] # One vector per span
# NB: We assume that the indices refer to a concatenated Floats2d that
# has one row per token in the *batch* of documents. This makes it unambiguous
# which row is in which document, because if the lengths are e.g. [10, 5],
# a span starting at 11 must be starting at token 2 of doc 1. A bug could
# potentially cause you to have a span which crosses a doc boundary though,
# which would be bad.
# The lengths in the Ragged are not the tokens per doc, but the number of
# mentions per doc.
def __add__(self, right):
out = self.vectors.data + right.vectors.data
return SpanEmbeddings(self.indices, Ragged(out, self.vectors.lengths))
def __iadd__(self, right):
self.vectors.data += right.vectors.data
return self
def build_width_scorer(max_span_width, hidden_size, feature_embed_size=20):
span_width_prior = (
Embed(nV=max_span_width, nO=feature_embed_size)
>> Linear(nI=feature_embed_size, nO=hidden_size)
>> Relu(nI=hidden_size, nO=hidden_size)
>> Dropout()
>> Linear(nI=hidden_size, nO=1)
)
span_width_prior.initialize()
model = Model("WidthScorer", forward=width_score_forward, layers=[span_width_prior])
model.set_ref("width_prior", span_width_prior)
return model
def width_score_forward(
model, embeds: SpanEmbeddings, is_train
) -> Tuple[Floats1d, Callable]:
# calculate widths, subtracting 1 so it's 0-index
w_ffnn = model.get_ref("width_prior")
idxs = embeds.indices
widths = idxs[:, 1] - idxs[:, 0] - 1
wscores, width_b = w_ffnn(widths, is_train)
lens = embeds.vectors.lengths
def width_score_backward(d_score: Floats1d) -> SpanEmbeddings:
dX = width_b(d_score)
vecs = Ragged(dX, lens)
return SpanEmbeddings(idxs, vecs)
return wscores, width_score_backward
# model converting a Doc/Mention to span embeddings
# get_mentions: Callable[Doc, Pairs[int]]
def build_span_embedder(
get_mentions: Callable,
max_span_width: int = 20,
) -> Model[Tuple[List[Floats2d], List[Doc]], SpanEmbeddings]:
with Model.define_operators({">>": chain, "|": concatenate}):
span_reduce = extract_spans() >> (
reduce_first() | reduce_last() | reduce_mean()
)
model = Model(
"SpanEmbedding",
forward=span_embeddings_forward,
attrs={
"get_mentions": get_mentions,
# XXX might be better to make this an implicit parameter in the
# mention generator
"max_span_width": max_span_width,
},
layers=[span_reduce],
)
model.set_ref("span_reducer", span_reduce)
return model
def span_embeddings_forward(
model, inputs: Tuple[List[Floats2d], List[Doc]], is_train
) -> Tuple[SpanEmbeddings, Callable]:
ops = model.ops
xp = ops.xp
tokvecs, docs = inputs
# TODO fix this
dim = tokvecs[0].shape[1]
get_mentions = model.attrs["get_mentions"]
max_span_width = model.attrs["max_span_width"]
mentions = ops.alloc2i(0, 2)
docmenlens = [] # number of mentions per doc
for doc in docs:
starts, ends = get_mentions(doc, max_span_width)
docmenlens.append(len(starts))
cments = ops.asarray2i([starts, ends]).transpose()
mentions = xp.concatenate((mentions, cments))
# TODO support attention here
tokvecs = xp.concatenate(tokvecs)
doclens = [len(doc) for doc in docs]
tokvecs_r = Ragged(tokvecs, doclens)
mentions_r = Ragged(mentions, docmenlens)
span_reduce = model.get_ref("span_reducer")
spanvecs, span_reduce_back = span_reduce((tokvecs_r, mentions_r), is_train)
embeds = Ragged(spanvecs, docmenlens)
def backprop_span_embed(dY: SpanEmbeddings) -> Tuple[List[Floats2d], List[Doc]]:
grad, idxes = span_reduce_back(dY.vectors.data)
oweights = []
offset = 0
for doclen in doclens:
hi = offset + doclen
oweights.append(grad.data[offset:hi])
offset = hi
return oweights, docs
return SpanEmbeddings(mentions, embeds), backprop_span_embed
def build_coarse_pruner(
mention_limit: int,
mention_limit_ratio: float,
) -> Model[SpanEmbeddings, SpanEmbeddings]:
model = Model(
"CoarsePruner",
forward=coarse_prune,
attrs={
"mention_limit": mention_limit,
"mention_limit_ratio": mention_limit_ratio,
},
)
return model
def coarse_prune(
model, inputs: Tuple[Floats1d, SpanEmbeddings], is_train
) -> Tuple[Tuple[Floats1d, SpanEmbeddings], Callable]:
"""Given scores for mention, output the top non-crossing mentions.
Mentions can contain other mentions, but candidate mentions cannot cross each other.
"""
rawscores, spanembeds = inputs
scores = rawscores.flatten()
mention_limit = model.attrs["mention_limit"]
mention_limit_ratio = model.attrs["mention_limit_ratio"]
# XXX: Issue here. Don't need docs to find crossing spans, but might for the limits.
# In old code the limit can be:
# - hard number per doc
# - ratio of tokens in the doc
offset = 0
selected = []
sellens = []
for menlen in spanembeds.vectors.lengths:
hi = offset + menlen
cscores = scores[offset:hi]
# negate it so highest numbers come first
# This is relatively slow but can't be skipped.
tops = (model.ops.xp.argsort(-1 * cscores)).tolist()
starts = spanembeds.indices[offset:hi, 0].tolist()
ends = spanembeds.indices[offset:hi:, 1].tolist()
# calculate the doc length
doclen = ends[-1] - starts[0]
# XXX seems to make more sense to use menlen than doclen here?
# coref-hoi uses doclen (number of words).
mlimit = min(mention_limit, int(mention_limit_ratio * doclen))
# csel is a 1d integer list
csel = select_non_crossing_spans(tops, starts, ends, mlimit)
# add the offset so these indices are absolute
csel = [ii + offset for ii in csel]
# this should be constant because short choices are padded
sellens.append(len(csel))
selected += csel
offset += menlen
selected = model.ops.asarray1i(selected)
top_spans = spanembeds.indices[selected]
top_vecs = spanembeds.vectors.data[selected]
out = SpanEmbeddings(top_spans, Ragged(top_vecs, sellens))
# save some variables so the embeds can be garbage collected
idxlen = spanembeds.indices.shape[0]
vecshape = spanembeds.vectors.data.shape
indices = spanembeds.indices
veclens = out.vectors.lengths
def coarse_prune_backprop(
dY: Tuple[Floats1d, SpanEmbeddings]
) -> Tuple[Floats1d, SpanEmbeddings]:
dYscores, dYembeds = dY
dXscores = model.ops.alloc1f(idxlen)
dXscores[selected] = dYscores.flatten()
dXvecs = model.ops.alloc2f(*vecshape)
dXvecs[selected] = dYembeds.vectors.data
rout = Ragged(dXvecs, veclens)
dXembeds = SpanEmbeddings(indices, rout)
# inflate for mention scorer
dXscores = model.ops.xp.expand_dims(dXscores, 1)
return (dXscores, dXembeds)
return (scores[selected], out), coarse_prune_backprop
def build_take_vecs() -> Model[SpanEmbeddings, Floats2d]:
# this just gets vectors out of spanembeddings
# XXX Might be better to convert SpanEmbeddings to a tuple and use with_getitem
return Model("TakeVecs", forward=take_vecs_forward)
def take_vecs_forward(model, inputs: SpanEmbeddings, is_train) -> Floats2d:
idxs = inputs.indices
lens = inputs.vectors.lengths
def backprop(dY: Floats2d) -> SpanEmbeddings:
vecs = Ragged(dY, lens)
return SpanEmbeddings(idxs, vecs)
return inputs.vectors.data, backprop
def build_ant_scorer(
bilinear, dropout, ant_limit=50
) -> Model[Tuple[Floats1d, SpanEmbeddings], List[Floats2d]]:
model = Model(
"AntScorer",
forward=ant_scorer_forward,
layers=[bilinear, dropout],
attrs={
"ant_limit": ant_limit,
},
)
model.set_ref("bilinear", bilinear)
model.set_ref("dropout", dropout)
return model
def ant_scorer_forward(
model, inputs: Tuple[Floats1d, SpanEmbeddings], is_train
) -> Tuple[Tuple[List[Tuple[Floats2d, Ints2d]], Ints2d], Callable]:
ops = model.ops
xp = ops.xp
ant_limit = model.attrs["ant_limit"]
# this contains the coarse bilinear in coref-hoi
# coarse bilinear is a single layer linear network
# TODO make these proper refs
bilinear = model.get_ref("bilinear")
dropout = model.get_ref("dropout")
mscores, sembeds = inputs
vecs = sembeds.vectors # ragged
offset = 0
backprops = []
out = []
for ll in vecs.lengths:
hi = offset + ll
# each iteration is one doc
# first calculate the pairwise product scores
cvecs = vecs.data[offset:hi]
pw_prod, prod_back = pairwise_product(bilinear, dropout, cvecs, is_train)
# now calculate the pairwise mention scores
ms = mscores[offset:hi].flatten()
pw_sum, pw_sum_back = pairwise_sum(ops, ms)
# make a mask so antecedents precede referrents
ant_range = xp.arange(0, cvecs.shape[0])
# This will take the log of 0, which causes a warning, but we're doing
# it on purpose so we can just ignore the warning.
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
mask = xp.log(
(xp.expand_dims(ant_range, 1) - xp.expand_dims(ant_range, 0)) >= 1
).astype("f")
scores = pw_prod + pw_sum + mask
top_limit = min(ant_limit, len(scores))
top_scores, top_scores_idx = topk(xp, scores, top_limit)
# now add the placeholder
placeholder = ops.alloc2f(scores.shape[0], 1)
top_scores = xp.concatenate((placeholder, top_scores), 1)
out.append((top_scores, top_scores_idx))
# In the full model these scores can be further refined. In the current
# state of this model we're done here, so this pruning is less important,
# but it's still helpful for reducing memory usage (since scores can be
# garbage collected when the loop exits).
offset += ll
backprops.append((prod_back, pw_sum_back))
# save vars for gc
vecshape = vecs.data.shape
veclens = vecs.lengths
scoreshape = mscores.shape
idxes = sembeds.indices
def backprop(
dYs: Tuple[List[Tuple[Floats2d, Ints2d]], Ints2d]
) -> Tuple[Floats2d, SpanEmbeddings]:
dYscores, dYembeds = dYs
dXembeds = Ragged(ops.alloc2f(*vecshape), veclens)
dXscores = ops.alloc1f(*scoreshape)
offset = 0
for dy, (prod_back, pw_sum_back), ll in zip(dYscores, backprops, veclens):
hi = offset + ll
dyscore, dyidx = dy
# remove the placeholder
dyscore = dyscore[:, 1:]
# the full score grid is square
fullscore = ops.alloc2f(ll, ll)
for ii, (ridx, rscores) in enumerate(zip(dyidx, dyscore)):
fullscore[ii][ridx] = rscores
dXembeds.data[offset:hi] = prod_back(fullscore)
dXscores[offset:hi] = pw_sum_back(fullscore)
offset = hi
# make it fit back into the linear
dXscores = xp.expand_dims(dXscores, 1)
return (dXscores, SpanEmbeddings(idxes, dXembeds))
return (out, sembeds.indices), backprop
def pairwise_sum(ops, mention_scores: Floats1d) -> Tuple[Floats2d, Callable]:
"""Find the most likely mention-antecedent pairs."""
# This doesn't use multiplication because two items with low mention scores
# don't make a good candidate pair.
pw_sum = ops.xp.expand_dims(mention_scores, 1) + ops.xp.expand_dims(
mention_scores, 0
)
def backward(d_pwsum: Floats2d) -> Floats1d:
# For the backward pass, the gradient is distributed over the whole row and
# column, so pull it all in.
out = d_pwsum.sum(axis=0) + d_pwsum.sum(axis=1)
return out
return pw_sum, backward
def pairwise_product(bilinear, dropout, vecs: Floats2d, is_train):
# A neat side effect of this is that we don't have to pass the backprops
# around separately because the closure handles them.
source, source_b = bilinear(vecs, is_train)
target, target_b = dropout(vecs.T, is_train)
pw_prod = source @ target
def backward(d_prod: Floats2d) -> Floats2d:
dS = source_b(d_prod @ target.T)
dT = target_b(source.T @ d_prod)
dX = dS + dT.T
return dX
return pw_prod, backward
# XXX here down is wl-coref
from typing import List, Tuple
import torch import torch
from thinc.util import xp2torch, torch2xp from thinc.util import xp2torch, torch2xp
# TODO rename this to coref_util
from .coref_util import add_dummy from .coref_util import add_dummy
# TODO rename to plain coref # TODO rename to plain coref
@registry.architectures("spacy.WLCoref.v1") @registry.architectures("spacy.Coref.v1")
def build_wl_coref_model( def build_wl_coref_model(
tok2vec: Model[List[Doc], List[Floats2d]], tok2vec: Model[List[Doc], List[Floats2d]],
embedding_size: int = 20, embedding_size: int = 20,