mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 12:42:20 +03:00
Delete all the coref-hoi code
This commit is contained in:
parent
abdc7d87af
commit
d0ae2590db
|
@ -11,457 +11,13 @@ from ...tokens import Doc
|
|||
from ...util import registry
|
||||
from ..extract_spans import extract_spans
|
||||
|
||||
from .coref_util import get_candidate_mentions, select_non_crossing_spans, topk
|
||||
|
||||
|
||||
@registry.architectures("spacy.Coref.v1")
|
||||
def build_coref(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
get_mentions: Any = get_candidate_mentions,
|
||||
hidden: int = 1000,
|
||||
dropout: float = 0.3,
|
||||
mention_limit: int = 3900,
|
||||
# TODO this needs a better name. It limits the max mentions as a ratio of
|
||||
# the token count.
|
||||
mention_limit_ratio: float = 0.4,
|
||||
max_span_width: int = 20,
|
||||
antecedent_limit: int = 50,
|
||||
):
|
||||
dim = tok2vec.get_dim("nO") * 3
|
||||
|
||||
span_embedder = build_span_embedder(get_mentions, max_span_width)
|
||||
|
||||
with Model.define_operators({">>": chain, "&": tuplify, "+": add}):
|
||||
|
||||
mention_scorer = (
|
||||
Linear(nI=dim, nO=hidden)
|
||||
>> Relu(nI=hidden, nO=hidden)
|
||||
>> Dropout(dropout)
|
||||
>> Linear(nI=hidden, nO=hidden)
|
||||
>> Relu(nI=hidden, nO=hidden)
|
||||
>> Dropout(dropout)
|
||||
>> Linear(nI=hidden, nO=1)
|
||||
)
|
||||
mention_scorer.initialize()
|
||||
|
||||
# TODO make feature_embed_size a param
|
||||
feature_embed_size = 20
|
||||
width_scorer = build_width_scorer(max_span_width, hidden, feature_embed_size)
|
||||
|
||||
bilinear = Linear(nI=dim, nO=dim) >> Dropout(dropout)
|
||||
bilinear.initialize()
|
||||
|
||||
ms = (build_take_vecs() >> mention_scorer) + width_scorer
|
||||
|
||||
model = (
|
||||
(tok2vec & noop())
|
||||
>> span_embedder
|
||||
>> (ms & noop())
|
||||
>> build_coarse_pruner(mention_limit, mention_limit_ratio)
|
||||
>> build_ant_scorer(bilinear, Dropout(dropout), antecedent_limit)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
@dataclass
|
||||
class SpanEmbeddings:
|
||||
indices: Ints2d # Array with 2 columns (for start and end index)
|
||||
vectors: Ragged # Ragged[Floats2d] # One vector per span
|
||||
# NB: We assume that the indices refer to a concatenated Floats2d that
|
||||
# has one row per token in the *batch* of documents. This makes it unambiguous
|
||||
# which row is in which document, because if the lengths are e.g. [10, 5],
|
||||
# a span starting at 11 must be starting at token 2 of doc 1. A bug could
|
||||
# potentially cause you to have a span which crosses a doc boundary though,
|
||||
# which would be bad.
|
||||
# The lengths in the Ragged are not the tokens per doc, but the number of
|
||||
# mentions per doc.
|
||||
|
||||
def __add__(self, right):
|
||||
out = self.vectors.data + right.vectors.data
|
||||
return SpanEmbeddings(self.indices, Ragged(out, self.vectors.lengths))
|
||||
|
||||
def __iadd__(self, right):
|
||||
self.vectors.data += right.vectors.data
|
||||
return self
|
||||
|
||||
|
||||
def build_width_scorer(max_span_width, hidden_size, feature_embed_size=20):
|
||||
span_width_prior = (
|
||||
Embed(nV=max_span_width, nO=feature_embed_size)
|
||||
>> Linear(nI=feature_embed_size, nO=hidden_size)
|
||||
>> Relu(nI=hidden_size, nO=hidden_size)
|
||||
>> Dropout()
|
||||
>> Linear(nI=hidden_size, nO=1)
|
||||
)
|
||||
span_width_prior.initialize()
|
||||
model = Model("WidthScorer", forward=width_score_forward, layers=[span_width_prior])
|
||||
model.set_ref("width_prior", span_width_prior)
|
||||
return model
|
||||
|
||||
|
||||
def width_score_forward(
|
||||
model, embeds: SpanEmbeddings, is_train
|
||||
) -> Tuple[Floats1d, Callable]:
|
||||
# calculate widths, subtracting 1 so it's 0-index
|
||||
w_ffnn = model.get_ref("width_prior")
|
||||
idxs = embeds.indices
|
||||
widths = idxs[:, 1] - idxs[:, 0] - 1
|
||||
wscores, width_b = w_ffnn(widths, is_train)
|
||||
|
||||
lens = embeds.vectors.lengths
|
||||
|
||||
def width_score_backward(d_score: Floats1d) -> SpanEmbeddings:
|
||||
|
||||
dX = width_b(d_score)
|
||||
vecs = Ragged(dX, lens)
|
||||
return SpanEmbeddings(idxs, vecs)
|
||||
|
||||
return wscores, width_score_backward
|
||||
|
||||
|
||||
# model converting a Doc/Mention to span embeddings
|
||||
# get_mentions: Callable[Doc, Pairs[int]]
|
||||
def build_span_embedder(
|
||||
get_mentions: Callable,
|
||||
max_span_width: int = 20,
|
||||
) -> Model[Tuple[List[Floats2d], List[Doc]], SpanEmbeddings]:
|
||||
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
span_reduce = extract_spans() >> (
|
||||
reduce_first() | reduce_last() | reduce_mean()
|
||||
)
|
||||
model = Model(
|
||||
"SpanEmbedding",
|
||||
forward=span_embeddings_forward,
|
||||
attrs={
|
||||
"get_mentions": get_mentions,
|
||||
# XXX might be better to make this an implicit parameter in the
|
||||
# mention generator
|
||||
"max_span_width": max_span_width,
|
||||
},
|
||||
layers=[span_reduce],
|
||||
)
|
||||
model.set_ref("span_reducer", span_reduce)
|
||||
return model
|
||||
|
||||
|
||||
def span_embeddings_forward(
|
||||
model, inputs: Tuple[List[Floats2d], List[Doc]], is_train
|
||||
) -> Tuple[SpanEmbeddings, Callable]:
|
||||
ops = model.ops
|
||||
xp = ops.xp
|
||||
|
||||
tokvecs, docs = inputs
|
||||
|
||||
# TODO fix this
|
||||
dim = tokvecs[0].shape[1]
|
||||
|
||||
get_mentions = model.attrs["get_mentions"]
|
||||
max_span_width = model.attrs["max_span_width"]
|
||||
mentions = ops.alloc2i(0, 2)
|
||||
docmenlens = [] # number of mentions per doc
|
||||
|
||||
for doc in docs:
|
||||
starts, ends = get_mentions(doc, max_span_width)
|
||||
docmenlens.append(len(starts))
|
||||
cments = ops.asarray2i([starts, ends]).transpose()
|
||||
|
||||
mentions = xp.concatenate((mentions, cments))
|
||||
|
||||
# TODO support attention here
|
||||
tokvecs = xp.concatenate(tokvecs)
|
||||
doclens = [len(doc) for doc in docs]
|
||||
tokvecs_r = Ragged(tokvecs, doclens)
|
||||
mentions_r = Ragged(mentions, docmenlens)
|
||||
|
||||
span_reduce = model.get_ref("span_reducer")
|
||||
spanvecs, span_reduce_back = span_reduce((tokvecs_r, mentions_r), is_train)
|
||||
|
||||
embeds = Ragged(spanvecs, docmenlens)
|
||||
|
||||
def backprop_span_embed(dY: SpanEmbeddings) -> Tuple[List[Floats2d], List[Doc]]:
|
||||
grad, idxes = span_reduce_back(dY.vectors.data)
|
||||
|
||||
oweights = []
|
||||
offset = 0
|
||||
for doclen in doclens:
|
||||
hi = offset + doclen
|
||||
oweights.append(grad.data[offset:hi])
|
||||
offset = hi
|
||||
|
||||
return oweights, docs
|
||||
|
||||
return SpanEmbeddings(mentions, embeds), backprop_span_embed
|
||||
|
||||
|
||||
def build_coarse_pruner(
|
||||
mention_limit: int,
|
||||
mention_limit_ratio: float,
|
||||
) -> Model[SpanEmbeddings, SpanEmbeddings]:
|
||||
model = Model(
|
||||
"CoarsePruner",
|
||||
forward=coarse_prune,
|
||||
attrs={
|
||||
"mention_limit": mention_limit,
|
||||
"mention_limit_ratio": mention_limit_ratio,
|
||||
},
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def coarse_prune(
|
||||
model, inputs: Tuple[Floats1d, SpanEmbeddings], is_train
|
||||
) -> Tuple[Tuple[Floats1d, SpanEmbeddings], Callable]:
|
||||
"""Given scores for mention, output the top non-crossing mentions.
|
||||
|
||||
Mentions can contain other mentions, but candidate mentions cannot cross each other.
|
||||
"""
|
||||
rawscores, spanembeds = inputs
|
||||
scores = rawscores.flatten()
|
||||
mention_limit = model.attrs["mention_limit"]
|
||||
mention_limit_ratio = model.attrs["mention_limit_ratio"]
|
||||
# XXX: Issue here. Don't need docs to find crossing spans, but might for the limits.
|
||||
# In old code the limit can be:
|
||||
# - hard number per doc
|
||||
# - ratio of tokens in the doc
|
||||
|
||||
offset = 0
|
||||
selected = []
|
||||
sellens = []
|
||||
for menlen in spanembeds.vectors.lengths:
|
||||
hi = offset + menlen
|
||||
cscores = scores[offset:hi]
|
||||
|
||||
# negate it so highest numbers come first
|
||||
# This is relatively slow but can't be skipped.
|
||||
tops = (model.ops.xp.argsort(-1 * cscores)).tolist()
|
||||
starts = spanembeds.indices[offset:hi, 0].tolist()
|
||||
ends = spanembeds.indices[offset:hi:, 1].tolist()
|
||||
|
||||
# calculate the doc length
|
||||
doclen = ends[-1] - starts[0]
|
||||
# XXX seems to make more sense to use menlen than doclen here?
|
||||
# coref-hoi uses doclen (number of words).
|
||||
mlimit = min(mention_limit, int(mention_limit_ratio * doclen))
|
||||
# csel is a 1d integer list
|
||||
csel = select_non_crossing_spans(tops, starts, ends, mlimit)
|
||||
# add the offset so these indices are absolute
|
||||
csel = [ii + offset for ii in csel]
|
||||
# this should be constant because short choices are padded
|
||||
sellens.append(len(csel))
|
||||
selected += csel
|
||||
offset += menlen
|
||||
|
||||
selected = model.ops.asarray1i(selected)
|
||||
top_spans = spanembeds.indices[selected]
|
||||
top_vecs = spanembeds.vectors.data[selected]
|
||||
|
||||
out = SpanEmbeddings(top_spans, Ragged(top_vecs, sellens))
|
||||
|
||||
# save some variables so the embeds can be garbage collected
|
||||
idxlen = spanembeds.indices.shape[0]
|
||||
vecshape = spanembeds.vectors.data.shape
|
||||
indices = spanembeds.indices
|
||||
veclens = out.vectors.lengths
|
||||
|
||||
def coarse_prune_backprop(
|
||||
dY: Tuple[Floats1d, SpanEmbeddings]
|
||||
) -> Tuple[Floats1d, SpanEmbeddings]:
|
||||
|
||||
dYscores, dYembeds = dY
|
||||
|
||||
dXscores = model.ops.alloc1f(idxlen)
|
||||
dXscores[selected] = dYscores.flatten()
|
||||
|
||||
dXvecs = model.ops.alloc2f(*vecshape)
|
||||
dXvecs[selected] = dYembeds.vectors.data
|
||||
rout = Ragged(dXvecs, veclens)
|
||||
dXembeds = SpanEmbeddings(indices, rout)
|
||||
|
||||
# inflate for mention scorer
|
||||
dXscores = model.ops.xp.expand_dims(dXscores, 1)
|
||||
|
||||
return (dXscores, dXembeds)
|
||||
|
||||
return (scores[selected], out), coarse_prune_backprop
|
||||
|
||||
|
||||
def build_take_vecs() -> Model[SpanEmbeddings, Floats2d]:
|
||||
# this just gets vectors out of spanembeddings
|
||||
# XXX Might be better to convert SpanEmbeddings to a tuple and use with_getitem
|
||||
return Model("TakeVecs", forward=take_vecs_forward)
|
||||
|
||||
|
||||
def take_vecs_forward(model, inputs: SpanEmbeddings, is_train) -> Floats2d:
|
||||
idxs = inputs.indices
|
||||
lens = inputs.vectors.lengths
|
||||
|
||||
def backprop(dY: Floats2d) -> SpanEmbeddings:
|
||||
vecs = Ragged(dY, lens)
|
||||
return SpanEmbeddings(idxs, vecs)
|
||||
|
||||
return inputs.vectors.data, backprop
|
||||
|
||||
|
||||
def build_ant_scorer(
|
||||
bilinear, dropout, ant_limit=50
|
||||
) -> Model[Tuple[Floats1d, SpanEmbeddings], List[Floats2d]]:
|
||||
model = Model(
|
||||
"AntScorer",
|
||||
forward=ant_scorer_forward,
|
||||
layers=[bilinear, dropout],
|
||||
attrs={
|
||||
"ant_limit": ant_limit,
|
||||
},
|
||||
)
|
||||
model.set_ref("bilinear", bilinear)
|
||||
model.set_ref("dropout", dropout)
|
||||
return model
|
||||
|
||||
|
||||
def ant_scorer_forward(
|
||||
model, inputs: Tuple[Floats1d, SpanEmbeddings], is_train
|
||||
) -> Tuple[Tuple[List[Tuple[Floats2d, Ints2d]], Ints2d], Callable]:
|
||||
ops = model.ops
|
||||
xp = ops.xp
|
||||
|
||||
ant_limit = model.attrs["ant_limit"]
|
||||
# this contains the coarse bilinear in coref-hoi
|
||||
# coarse bilinear is a single layer linear network
|
||||
# TODO make these proper refs
|
||||
bilinear = model.get_ref("bilinear")
|
||||
dropout = model.get_ref("dropout")
|
||||
|
||||
mscores, sembeds = inputs
|
||||
vecs = sembeds.vectors # ragged
|
||||
|
||||
offset = 0
|
||||
backprops = []
|
||||
out = []
|
||||
for ll in vecs.lengths:
|
||||
hi = offset + ll
|
||||
# each iteration is one doc
|
||||
|
||||
# first calculate the pairwise product scores
|
||||
cvecs = vecs.data[offset:hi]
|
||||
pw_prod, prod_back = pairwise_product(bilinear, dropout, cvecs, is_train)
|
||||
|
||||
# now calculate the pairwise mention scores
|
||||
ms = mscores[offset:hi].flatten()
|
||||
pw_sum, pw_sum_back = pairwise_sum(ops, ms)
|
||||
|
||||
# make a mask so antecedents precede referrents
|
||||
ant_range = xp.arange(0, cvecs.shape[0])
|
||||
|
||||
# This will take the log of 0, which causes a warning, but we're doing
|
||||
# it on purpose so we can just ignore the warning.
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||
mask = xp.log(
|
||||
(xp.expand_dims(ant_range, 1) - xp.expand_dims(ant_range, 0)) >= 1
|
||||
).astype("f")
|
||||
|
||||
scores = pw_prod + pw_sum + mask
|
||||
|
||||
top_limit = min(ant_limit, len(scores))
|
||||
top_scores, top_scores_idx = topk(xp, scores, top_limit)
|
||||
# now add the placeholder
|
||||
placeholder = ops.alloc2f(scores.shape[0], 1)
|
||||
top_scores = xp.concatenate((placeholder, top_scores), 1)
|
||||
|
||||
out.append((top_scores, top_scores_idx))
|
||||
|
||||
# In the full model these scores can be further refined. In the current
|
||||
# state of this model we're done here, so this pruning is less important,
|
||||
# but it's still helpful for reducing memory usage (since scores can be
|
||||
# garbage collected when the loop exits).
|
||||
|
||||
offset += ll
|
||||
backprops.append((prod_back, pw_sum_back))
|
||||
|
||||
# save vars for gc
|
||||
vecshape = vecs.data.shape
|
||||
veclens = vecs.lengths
|
||||
scoreshape = mscores.shape
|
||||
idxes = sembeds.indices
|
||||
|
||||
def backprop(
|
||||
dYs: Tuple[List[Tuple[Floats2d, Ints2d]], Ints2d]
|
||||
) -> Tuple[Floats2d, SpanEmbeddings]:
|
||||
dYscores, dYembeds = dYs
|
||||
dXembeds = Ragged(ops.alloc2f(*vecshape), veclens)
|
||||
dXscores = ops.alloc1f(*scoreshape)
|
||||
|
||||
offset = 0
|
||||
for dy, (prod_back, pw_sum_back), ll in zip(dYscores, backprops, veclens):
|
||||
hi = offset + ll
|
||||
dyscore, dyidx = dy
|
||||
# remove the placeholder
|
||||
dyscore = dyscore[:, 1:]
|
||||
# the full score grid is square
|
||||
|
||||
fullscore = ops.alloc2f(ll, ll)
|
||||
for ii, (ridx, rscores) in enumerate(zip(dyidx, dyscore)):
|
||||
fullscore[ii][ridx] = rscores
|
||||
|
||||
dXembeds.data[offset:hi] = prod_back(fullscore)
|
||||
dXscores[offset:hi] = pw_sum_back(fullscore)
|
||||
|
||||
offset = hi
|
||||
# make it fit back into the linear
|
||||
dXscores = xp.expand_dims(dXscores, 1)
|
||||
return (dXscores, SpanEmbeddings(idxes, dXembeds))
|
||||
|
||||
return (out, sembeds.indices), backprop
|
||||
|
||||
|
||||
def pairwise_sum(ops, mention_scores: Floats1d) -> Tuple[Floats2d, Callable]:
|
||||
"""Find the most likely mention-antecedent pairs."""
|
||||
# This doesn't use multiplication because two items with low mention scores
|
||||
# don't make a good candidate pair.
|
||||
|
||||
pw_sum = ops.xp.expand_dims(mention_scores, 1) + ops.xp.expand_dims(
|
||||
mention_scores, 0
|
||||
)
|
||||
|
||||
def backward(d_pwsum: Floats2d) -> Floats1d:
|
||||
# For the backward pass, the gradient is distributed over the whole row and
|
||||
# column, so pull it all in.
|
||||
|
||||
out = d_pwsum.sum(axis=0) + d_pwsum.sum(axis=1)
|
||||
|
||||
return out
|
||||
|
||||
return pw_sum, backward
|
||||
|
||||
|
||||
def pairwise_product(bilinear, dropout, vecs: Floats2d, is_train):
|
||||
# A neat side effect of this is that we don't have to pass the backprops
|
||||
# around separately because the closure handles them.
|
||||
source, source_b = bilinear(vecs, is_train)
|
||||
target, target_b = dropout(vecs.T, is_train)
|
||||
pw_prod = source @ target
|
||||
|
||||
def backward(d_prod: Floats2d) -> Floats2d:
|
||||
dS = source_b(d_prod @ target.T)
|
||||
dT = target_b(source.T @ d_prod)
|
||||
dX = dS + dT.T
|
||||
return dX
|
||||
|
||||
return pw_prod, backward
|
||||
|
||||
|
||||
# XXX here down is wl-coref
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
from thinc.util import xp2torch, torch2xp
|
||||
|
||||
# TODO rename this to coref_util
|
||||
from .coref_util import add_dummy
|
||||
|
||||
# TODO rename to plain coref
|
||||
@registry.architectures("spacy.WLCoref.v1")
|
||||
@registry.architectures("spacy.Coref.v1")
|
||||
def build_wl_coref_model(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
embedding_size: int = 20,
|
||||
|
|
Loading…
Reference in New Issue
Block a user