Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2017-06-03 15:30:32 -05:00
commit d0e42f9275
23 changed files with 330 additions and 164 deletions

View File

@ -194,8 +194,8 @@ class GoldCorpus(object):
def count_train(self):
n = 0
for _ in self.train_tuples:
n += 1
for raw_text, paragraph_tuples in self.train_tuples:
n += len(paragraph_tuples)
return n
def train_docs(self, nlp, gold_preproc=False,

View File

@ -5,14 +5,16 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class DanishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'da'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -2,21 +2,25 @@
from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .norm_exceptions import NORM_EXCEPTIONS
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from .syntax_iterators import SYNTAX_ITERATORS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class GermanDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'de'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM],
NORM_EXCEPTIONS, BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
tag_map = dict(TAG_MAP)

View File

@ -0,0 +1,17 @@
# coding: utf8
from __future__ import unicode_literals
# Here we only want to include the absolute most common words. Otherwise,
# this list would get impossibly long for German especially considering the
# old vs. new spelling rules, and all possible cases.
_exc = {
"daß": "dass"
}
NORM_EXCEPTIONS = {}
for string, norm in _exc.items():
NORM_EXCEPTIONS[string.title()] = norm

View File

@ -8,7 +8,7 @@ from ...deprecated import PRON_LEMMA
_exc = {
"auf'm": [
{ORTH: "auf", LEMMA: "auf"},
{ORTH: "'m", LEMMA: "der", NORM: "dem" }],
{ORTH: "'m", LEMMA: "der", NORM: "dem"}],
"du's": [
{ORTH: "du", LEMMA: PRON_LEMMA, TAG: "PPER"},
@ -53,97 +53,97 @@ _exc = {
for exc_data in [
{ORTH: "'S", LEMMA: PRON_LEMMA, TAG: "PPER"},
{ORTH: "'s", LEMMA: PRON_LEMMA, TAG: "PPER"},
{ORTH: "S'", LEMMA: PRON_LEMMA, TAG: "PPER"},
{ORTH: "s'", LEMMA: PRON_LEMMA, TAG: "PPER"},
{ORTH: "'S", LEMMA: PRON_LEMMA, NORM: "'s", TAG: "PPER"},
{ORTH: "'s", LEMMA: PRON_LEMMA, NORM: "'s", TAG: "PPER"},
{ORTH: "S'", LEMMA: PRON_LEMMA, NORM: "'s", TAG: "PPER"},
{ORTH: "s'", LEMMA: PRON_LEMMA, NORM: "'s", TAG: "PPER"},
{ORTH: "'n", LEMMA: "ein", NORM: "ein"},
{ORTH: "'ne", LEMMA: "eine", NORM: "eine"},
{ORTH: "'nen", LEMMA: "ein", NORM: "einen"},
{ORTH: "'nem", LEMMA: "ein", NORM: "einem"},
{ORTH: "Abb.", LEMMA: "Abbildung"},
{ORTH: "Abk.", LEMMA: "Abkürzung"},
{ORTH: "Abt.", LEMMA: "Abteilung"},
{ORTH: "Apr.", LEMMA: "April"},
{ORTH: "Aug.", LEMMA: "August"},
{ORTH: "Bd.", LEMMA: "Band"},
{ORTH: "Betr.", LEMMA: "Betreff"},
{ORTH: "Bf.", LEMMA: "Bahnhof"},
{ORTH: "Bhf.", LEMMA: "Bahnhof"},
{ORTH: "Bsp.", LEMMA: "Beispiel"},
{ORTH: "Dez.", LEMMA: "Dezember"},
{ORTH: "Di.", LEMMA: "Dienstag"},
{ORTH: "Do.", LEMMA: "Donnerstag"},
{ORTH: "Fa.", LEMMA: "Firma"},
{ORTH: "Fam.", LEMMA: "Familie"},
{ORTH: "Feb.", LEMMA: "Februar"},
{ORTH: "Fr.", LEMMA: "Frau"},
{ORTH: "Frl.", LEMMA: "Fräulein"},
{ORTH: "Hbf.", LEMMA: "Hauptbahnhof"},
{ORTH: "Hr.", LEMMA: "Herr"},
{ORTH: "Hrn.", LEMMA: "Herr"},
{ORTH: "Jan.", LEMMA: "Januar"},
{ORTH: "Jh.", LEMMA: "Jahrhundert"},
{ORTH: "Jhd.", LEMMA: "Jahrhundert"},
{ORTH: "Jul.", LEMMA: "Juli"},
{ORTH: "Jun.", LEMMA: "Juni"},
{ORTH: "Mi.", LEMMA: "Mittwoch"},
{ORTH: "Mio.", LEMMA: "Million"},
{ORTH: "Mo.", LEMMA: "Montag"},
{ORTH: "Mrd.", LEMMA: "Milliarde"},
{ORTH: "Mrz.", LEMMA: "März"},
{ORTH: "MwSt.", LEMMA: "Mehrwertsteuer"},
{ORTH: "Mär.", LEMMA: "März"},
{ORTH: "Nov.", LEMMA: "November"},
{ORTH: "Nr.", LEMMA: "Nummer"},
{ORTH: "Okt.", LEMMA: "Oktober"},
{ORTH: "Orig.", LEMMA: "Original"},
{ORTH: "Pkt.", LEMMA: "Punkt"},
{ORTH: "Prof.", LEMMA: "Professor"},
{ORTH: "Red.", LEMMA: "Redaktion"},
{ORTH: "Sa.", LEMMA: "Samstag"},
{ORTH: "Sep.", LEMMA: "September"},
{ORTH: "Sept.", LEMMA: "September"},
{ORTH: "So.", LEMMA: "Sonntag"},
{ORTH: "Std.", LEMMA: "Stunde"},
{ORTH: "Str.", LEMMA: "Straße"},
{ORTH: "Tel.", LEMMA: "Telefon"},
{ORTH: "Tsd.", LEMMA: "Tausend"},
{ORTH: "Univ.", LEMMA: "Universität"},
{ORTH: "abzgl.", LEMMA: "abzüglich"},
{ORTH: "allg.", LEMMA: "allgemein"},
{ORTH: "bspw.", LEMMA: "beispielsweise"},
{ORTH: "bzgl.", LEMMA: "bezüglich"},
{ORTH: "bzw.", LEMMA: "beziehungsweise"},
{ORTH: "Abb.", LEMMA: "Abbildung", NORM: "Abbildung"},
{ORTH: "Abk.", LEMMA: "Abkürzung", NORM: "Abkürzung"},
{ORTH: "Abt.", LEMMA: "Abteilung", NORM: "Abteilung"},
{ORTH: "Apr.", LEMMA: "April", NORM: "April"},
{ORTH: "Aug.", LEMMA: "August", NORM: "August"},
{ORTH: "Bd.", LEMMA: "Band", NORM: "Band"},
{ORTH: "Betr.", LEMMA: "Betreff", NORM: "Betreff"},
{ORTH: "Bf.", LEMMA: "Bahnhof", NORM: "Bahnhof"},
{ORTH: "Bhf.", LEMMA: "Bahnhof", NORM: "Bahnhof"},
{ORTH: "Bsp.", LEMMA: "Beispiel", NORM: "Beispiel"},
{ORTH: "Dez.", LEMMA: "Dezember", NORM: "Dezember"},
{ORTH: "Di.", LEMMA: "Dienstag", NORM: "Dienstag"},
{ORTH: "Do.", LEMMA: "Donnerstag", NORM: "Donnerstag"},
{ORTH: "Fa.", LEMMA: "Firma", NORM: "Firma"},
{ORTH: "Fam.", LEMMA: "Familie", NORM: "Familie"},
{ORTH: "Feb.", LEMMA: "Februar", NORM: "Februar"},
{ORTH: "Fr.", LEMMA: "Frau", NORM: "Frau"},
{ORTH: "Frl.", LEMMA: "Fräulein", NORM: "Fräulein"},
{ORTH: "Hbf.", LEMMA: "Hauptbahnhof", NORM: "Hauptbahnhof"},
{ORTH: "Hr.", LEMMA: "Herr", NORM: "Herr"},
{ORTH: "Hrn.", LEMMA: "Herr", NORM: "Herrn"},
{ORTH: "Jan.", LEMMA: "Januar", NORM: "Januar"},
{ORTH: "Jh.", LEMMA: "Jahrhundert", NORM: "Jahrhundert"},
{ORTH: "Jhd.", LEMMA: "Jahrhundert", NORM: "Jahrhundert"},
{ORTH: "Jul.", LEMMA: "Juli", NORM: "Juli"},
{ORTH: "Jun.", LEMMA: "Juni", NORM: "Juni"},
{ORTH: "Mi.", LEMMA: "Mittwoch", NORM: "Mittwoch"},
{ORTH: "Mio.", LEMMA: "Million", NORM: "Million"},
{ORTH: "Mo.", LEMMA: "Montag", NORM: "Montag"},
{ORTH: "Mrd.", LEMMA: "Milliarde", NORM: "Milliarde"},
{ORTH: "Mrz.", LEMMA: "März", NORM: "März"},
{ORTH: "MwSt.", LEMMA: "Mehrwertsteuer", NORM: "Mehrwertsteuer"},
{ORTH: "Mär.", LEMMA: "März", NORM: "März"},
{ORTH: "Nov.", LEMMA: "November", NORM: "November"},
{ORTH: "Nr.", LEMMA: "Nummer", NORM: "Nummer"},
{ORTH: "Okt.", LEMMA: "Oktober", NORM: "Oktober"},
{ORTH: "Orig.", LEMMA: "Original", NORM: "Original"},
{ORTH: "Pkt.", LEMMA: "Punkt", NORM: "Punkt"},
{ORTH: "Prof.", LEMMA: "Professor", NORM: "Professor"},
{ORTH: "Red.", LEMMA: "Redaktion", NORM: "Redaktion"},
{ORTH: "Sa.", LEMMA: "Samstag", NORM: "Samstag"},
{ORTH: "Sep.", LEMMA: "September", NORM: "September"},
{ORTH: "Sept.", LEMMA: "September", NORM: "September"},
{ORTH: "So.", LEMMA: "Sonntag", NORM: "Sonntag"},
{ORTH: "Std.", LEMMA: "Stunde", NORM: "Stunde"},
{ORTH: "Str.", LEMMA: "Straße", NORM: "Straße"},
{ORTH: "Tel.", LEMMA: "Telefon", NORM: "Telefon"},
{ORTH: "Tsd.", LEMMA: "Tausend", NORM: "Tausend"},
{ORTH: "Univ.", LEMMA: "Universität", NORM: "Universität"},
{ORTH: "abzgl.", LEMMA: "abzüglich", NORM: "abzüglich"},
{ORTH: "allg.", LEMMA: "allgemein", NORM: "allgemein"},
{ORTH: "bspw.", LEMMA: "beispielsweise", NORM: "beispielsweise"},
{ORTH: "bzgl.", LEMMA: "bezüglich", NORM: "bezüglich"},
{ORTH: "bzw.", LEMMA: "beziehungsweise", NORM: "beziehungsweise"},
{ORTH: "d.h.", LEMMA: "das heißt"},
{ORTH: "dgl.", LEMMA: "dergleichen"},
{ORTH: "ebd.", LEMMA: "ebenda"},
{ORTH: "eigtl.", LEMMA: "eigentlich"},
{ORTH: "engl.", LEMMA: "englisch"},
{ORTH: "evtl.", LEMMA: "eventuell"},
{ORTH: "frz.", LEMMA: "französisch"},
{ORTH: "gegr.", LEMMA: "gegründet"},
{ORTH: "ggf.", LEMMA: "gegebenenfalls"},
{ORTH: "ggfs.", LEMMA: "gegebenenfalls"},
{ORTH: "ggü.", LEMMA: "gegenüber"},
{ORTH: "dgl.", LEMMA: "dergleichen", NORM: "dergleichen"},
{ORTH: "ebd.", LEMMA: "ebenda", NORM: "ebenda"},
{ORTH: "eigtl.", LEMMA: "eigentlich", NORM: "eigentlich"},
{ORTH: "engl.", LEMMA: "englisch", NORM: "englisch"},
{ORTH: "evtl.", LEMMA: "eventuell", NORM: "eventuell"},
{ORTH: "frz.", LEMMA: "französisch", NORM: "französisch"},
{ORTH: "gegr.", LEMMA: "gegründet", NORM: "gegründet"},
{ORTH: "ggf.", LEMMA: "gegebenenfalls", NORM: "gegebenenfalls"},
{ORTH: "ggfs.", LEMMA: "gegebenenfalls", NORM: "gegebenenfalls"},
{ORTH: "ggü.", LEMMA: "gegenüber", NORM: "gegenüber"},
{ORTH: "i.O.", LEMMA: "in Ordnung"},
{ORTH: "i.d.R.", LEMMA: "in der Regel"},
{ORTH: "incl.", LEMMA: "inklusive"},
{ORTH: "inkl.", LEMMA: "inklusive"},
{ORTH: "insb.", LEMMA: "insbesondere"},
{ORTH: "kath.", LEMMA: "katholisch"},
{ORTH: "lt.", LEMMA: "laut"},
{ORTH: "max.", LEMMA: "maximal"},
{ORTH: "min.", LEMMA: "minimal"},
{ORTH: "mind.", LEMMA: "mindestens"},
{ORTH: "mtl.", LEMMA: "monatlich"},
{ORTH: "incl.", LEMMA: "inklusive", NORM: "inklusive"},
{ORTH: "inkl.", LEMMA: "inklusive", NORM: "inklusive"},
{ORTH: "insb.", LEMMA: "insbesondere", NORM: "insbesondere"},
{ORTH: "kath.", LEMMA: "katholisch", NORM: "katholisch"},
{ORTH: "lt.", LEMMA: "laut", NORM: "laut"},
{ORTH: "max.", LEMMA: "maximal", NORM: "maximal"},
{ORTH: "min.", LEMMA: "minimal", NORM: "minimal"},
{ORTH: "mind.", LEMMA: "mindestens", NORM: "mindestens"},
{ORTH: "mtl.", LEMMA: "monatlich", NORM: "monatlich"},
{ORTH: "n.Chr.", LEMMA: "nach Christus"},
{ORTH: "orig.", LEMMA: "original"},
{ORTH: "röm.", LEMMA: "römisch"},
{ORTH: "orig.", LEMMA: "original", NORM: "original"},
{ORTH: "röm.", LEMMA: "römisch", NORM: "römisch"},
{ORTH: "s.o.", LEMMA: "siehe oben"},
{ORTH: "sog.", LEMMA: "so genannt"},
{ORTH: "stellv.", LEMMA: "stellvertretend"},
{ORTH: "tägl.", LEMMA: "täglich"},
{ORTH: "tägl.", LEMMA: "täglich", NORM: "täglich"},
{ORTH: "u.U.", LEMMA: "unter Umständen"},
{ORTH: "u.s.w.", LEMMA: "und so weiter"},
{ORTH: "u.v.m.", LEMMA: "und vieles mehr"},
@ -153,9 +153,9 @@ for exc_data in [
{ORTH: "v.Chr.", LEMMA: "vor Christus"},
{ORTH: "v.a.", LEMMA: "vor allem"},
{ORTH: "v.l.n.r.", LEMMA: "von links nach rechts"},
{ORTH: "vgl.", LEMMA: "vergleiche"},
{ORTH: "vllt.", LEMMA: "vielleicht"},
{ORTH: "vlt.", LEMMA: "vielleicht"},
{ORTH: "vgl.", LEMMA: "vergleiche", NORM: "vergleiche"},
{ORTH: "vllt.", LEMMA: "vielleicht", NORM: "vielleicht"},
{ORTH: "vlt.", LEMMA: "vielleicht", NORM: "vielleicht"},
{ORTH: "z.B.", LEMMA: "zum Beispiel"},
{ORTH: "z.Bsp.", LEMMA: "zum Beispiel"},
{ORTH: "z.T.", LEMMA: "zum Teil"},
@ -163,7 +163,7 @@ for exc_data in [
{ORTH: "z.Zt.", LEMMA: "zur Zeit"},
{ORTH: "z.b.", LEMMA: "zum Beispiel"},
{ORTH: "zzgl.", LEMMA: "zuzüglich"},
{ORTH: "österr.", LEMMA: "österreichisch"}]:
{ORTH: "österr.", LEMMA: "österreichisch", NORM: "österreichisch"}]:
_exc[exc_data[ORTH]] = [dict(exc_data)]

View File

@ -21,7 +21,7 @@ class EnglishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'en'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM],
BASE_NORMS, NORM_EXCEPTIONS)
NORM_EXCEPTIONS, BASE_NORMS)
lex_attr_getters.update(LEX_ATTRS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)

View File

@ -1754,8 +1754,7 @@ _exc = {
}
NORM_EXCEPTIONS = {}
for string, norm in _exc.items():
_exc[string.title()] = norm
NORM_EXCEPTIONS = _exc
NORM_EXCEPTIONS[string.title()] = norm

View File

@ -7,15 +7,17 @@ from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class SpanishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'es'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
tag_map = dict(TAG_MAP)

View File

@ -5,14 +5,16 @@ from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class FinnishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'fi'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -7,15 +7,17 @@ from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class FrenchDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'fr'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -7,15 +7,17 @@ from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class HungarianDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'hu'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -5,15 +5,17 @@ from .stop_words import STOP_WORDS
from .lemmatizer import LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class ItalianDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'it'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -6,14 +6,16 @@ from .stop_words import STOP_WORDS
from .morph_rules import MORPH_RULES
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class NorwegianDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'nb'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -4,14 +4,16 @@ from __future__ import unicode_literals
from .stop_words import STOP_WORDS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class DutchDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'nl'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -4,14 +4,16 @@ from __future__ import unicode_literals
from .stop_words import STOP_WORDS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class PolishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'pl'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -7,15 +7,17 @@ from .lex_attrs import LEX_ATTRS
from .lemmatizer import LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class PortugueseDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'pt'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
lex_attr_getters.update(LEX_ATTRS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)

View File

@ -7,15 +7,17 @@ from .morph_rules import MORPH_RULES
from .lemmatizer import LEMMA_RULES, LOOKUP
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...lemmatizerlookup import Lemmatizer
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class SwedishDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'sv'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = set(STOP_WORDS)

View File

@ -3,14 +3,16 @@ from __future__ import unicode_literals
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ..norm_exceptions import BASE_NORMS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
from ...attrs import LANG, NORM
from ...util import update_exc, add_lookups
class MultiLanguageDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: 'xx'
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS)

View File

@ -8,20 +8,33 @@ import pytest
@pytest.mark.parametrize('text', ["auf'm", "du's", "über'm", "wir's"])
def test_tokenizer_splits_contractions(de_tokenizer, text):
def test_de_tokenizer_splits_contractions(de_tokenizer, text):
tokens = de_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize('text', ["z.B.", "d.h.", "Jan.", "Dez.", "Chr."])
def test_tokenizer_handles_abbr(de_tokenizer, text):
def test_de_tokenizer_handles_abbr(de_tokenizer, text):
tokens = de_tokenizer(text)
assert len(tokens) == 1
def test_tokenizer_handles_exc_in_text(de_tokenizer):
def test_de_tokenizer_handles_exc_in_text(de_tokenizer):
text = "Ich bin z.Zt. im Urlaub."
tokens = de_tokenizer(text)
assert len(tokens) == 6
assert tokens[2].text == "z.Zt."
assert tokens[2].lemma_ == "zur Zeit"
@pytest.mark.parametrize('text,norms', [("vor'm", ["vor", "dem"]), ("du's", ["du", "es"])])
def test_de_tokenizer_norm_exceptions(de_tokenizer, text, norms):
tokens = de_tokenizer(text)
assert [token.norm_ for token in tokens] == norms
@pytest.mark.xfail
@pytest.mark.parametrize('text,norm', [("daß", "dass")])
def test_de_lex_attrs_norm_exceptions(de_tokenizer, text, norm):
tokens = de_tokenizer(text)
assert tokens[0].norm_ == norm

View File

@ -102,3 +102,16 @@ def test_en_tokenizer_handles_times(en_tokenizer, text):
tokens = en_tokenizer(text)
assert len(tokens) == 2
assert tokens[1].lemma_ in ["a.m.", "p.m."]
@pytest.mark.parametrize('text,norms', [("I'm", ["i", "am"]), ("shan't", ["shall", "not"])])
def test_en_tokenizer_norm_exceptions(en_tokenizer, text, norms):
tokens = en_tokenizer(text)
assert [token.norm_ for token in tokens] == norms
@pytest.mark.xfail
@pytest.mark.parametrize('text,norm', [("radicalised", "radicalized"), ("cuz", "because")])
def test_en_lex_attrs_norm_exceptions(en_tokenizer, text, norm):
tokens = en_tokenizer(text)
assert tokens[0].norm_ == norm

View File

@ -383,3 +383,14 @@ mixin annotation-row(annots, style)
else
+cell=cell
block
//- Table of contents, to be used with +item mixins for links
col - [string] width of column (see +grid-col)
mixin table-of-contents(col)
+grid-col(col || "half")
+infobox
+label.o-block-small Table of contents
+list("numbers").u-text-small.o-no-block
block

View File

@ -5,31 +5,50 @@ include ../../_includes/_mixins
p
| Adding full support for a language touches many different parts of the
| spaCy library. This guide explains how to fit everything together, and
| points you to the specific workflows for each component. Obviously,
| there are lots of ways you can organise your code when you implement
| your own #[+api("language") #[code Language]] class. This guide will
| focus on how it's done within spaCy. For full language support, we'll
| need to:
| points you to the specific workflows for each component.
+list("numbers")
+item
| Create a #[strong #[code Language] subclass].
+item
| Define custom #[strong language data], like a stop list and tokenizer
| exceptions.
+item
| #[strong Test] the new language tokenizer.
+item
| #[strong Build the vocabulary], including word frequencies, Brown
| clusters and word vectors.
+item
| Set up a #[strong model direcory] and #[strong train] the tagger and
| parser.
+grid.o-no-block
+grid-col("half")
p
| Obviously, there are lots of ways you can organise your code when
| you implement your own language data. This guide will focus on
| how it's done within spaCy. For full language support, you'll
| need to create a #[code Language] subclass, define custom
| #[strong language data], like a stop list and tokenizer
| exceptions and test the new tokenizer. Once the language is set
| up, you can #[strong build the vocabulary], including word
| frequencies, Brown clusters and word vectors. Finally, you can
| #[strong train the tagger and parser], and save the model to a
| directory.
p
p
| For some languages, you may also want to develop a solution for
| lemmatization and morphological analysis.
+table-of-contents
+item #[+a("#language-subclass") The Language subclass]
+item #[+a("#language-data") Adding language data]
+item #[+a("#stop-workds") Stop words]
+item #[+a("#tokenizer-exceptions") Tokenizer exceptions]
+item #[+a("#norm-exceptions") Norm exceptions]
+item #[+a("#lex-attrs") Lexical attributes]
+item #[+a("#lemmatizer") Lemmatizer]
+item #[+a("#tag-map") Tag map]
+item #[+a("#morph-rules") Morph rules]
+item #[+a("#testing") Testing the tokenizer]
+item #[+a("#vocabulary") Building the vocabulary]
+item #[+a("#training") Training]
+aside("Working on spaCy's source")
| To add a new language to spaCy, you'll need to
| #[strong modify the library's code]. The easiest way to do this is to
| clone the #[+src(gh("spaCy")) repository] and #[strong build spaCy from source].
| For more information on this, see the #[+a("/docs/usage") installation guide].
| Unlike spaCy's core, which is mostly written in Cython, all language
| data is stored in regular Python files. This means that you won't have to
| rebuild anything in between you can simply make edits and reload spaCy
| to test them.
+h(2, "language-subclass") Creating a #[code Language] subclass
p
@ -123,6 +142,14 @@ p
| Special-case rules for the tokenizer, for example, contractions
| and abbreviations containing punctuation.
+row
+cell #[+src(gh("spaCy", "spacy/lang/norm_exceptions.py")) norm_exceptions.py]
+cell
| #[code NORM_EXCEPTIONS] (dict)
+cell
| Special-case rules for normalising tokens and assigning norms,
| for example American vs. British spelling.
+row
+cell #[+src(gh("spaCy", "spacy/lang/punctuation.py")) punctuation.py]
+cell
@ -235,7 +262,7 @@ p
TOKENIZER_EXCEPTIONS = {
"don't": [
{ORTH: "do", LEMMA: "do"},
{ORTH: "n't", LEMMA: "not", TAG: "RB"}]
{ORTH: "n't", LEMMA: "not", NORM: "not", TAG: "RB"}]
}
+infobox("Important note")
@ -303,13 +330,74 @@ p
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
# {"a.": [{ORTH: "a.", LEMMA: "all"}], ":)": [{ORTH: ":)"}]}
//-+aside("About spaCy's custom pronoun lemma")
+infobox("About spaCy's custom pronoun lemma")
| Unlike verbs and common nouns, there's no clear base form of a personal
| pronoun. Should the lemma of "me" be "I", or should we normalize person
| as well, giving "it" — or maybe "he"? spaCy's solution is to introduce a
| novel symbol, #[code.u-nowrap -PRON-], which is used as the lemma for
| all personal pronouns.
+h(3, "norm-exceptions") Norm exceptions
p
| In addition to #[code ORTH] or #[code LEMMA], tokenizer exceptions can
| also set a #[code NORM] attribute. This is useful to specify a normalised
| version of the token for example, the norm of "n't" is "not". By default,
| a token's norm equals its lowercase text. If the lowercase spelling of a
| word exists, norms should always be in lowercase.
+aside-code("Accessing norms").
doc = nlp(u"I can't")
assert [t.norm_ for t in doc] == ['i', 'can', 'not']
p
| spaCy usually tries to normalise words with different spellings to a single,
| common spelling. This has no effect on any other token attributes, or
| tokenization in general, but it ensures that
| #[strong equivalent tokens receive similar representations]. This can
| improve the model's predictions on words that weren't common in the
| training data, but are equivalent to other words for example, "realize"
| and "realise", or "thx" and "thanks".
p
| Similarly, spaCy also includes
| #[+src(gh("spaCy", "spacy/lang/norm_exceptions.py")) global base norms]
| for normalising different styles of quotation marks and currency
| symbols. Even though #[code $] and #[code €] are very different, spaCy
| normalises them both to #[code $]. This way, they'll always be seen as
| similar, no matter how common they were in the training data.
p
| Norm exceptions can be provided as a simple dictionary. For more examples,
| see the English
| #[+src(gh("spaCy", "spacy/lang/en/norm_exceptions.py")) norm_exceptions.py].
+code("Example").
NORM_EXCEPTIONS = {
"cos": "because",
"fav": "favorite",
"accessorise": "accessorize",
"accessorised": "accessorized"
}
p
| To add the custom norm exceptions lookup table, you can use the
| #[code add_lookups()] helper functions. It takes the default attribute
| getter function as its first argument, plus a variable list of
| dictionaries. If a string's norm is found in one of the dictionaries,
| that value is used otherwise, the default function is called and the
| token is assigned its default norm.
+code.
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM],
NORM_EXCEPTIONS, BASE_NORMS)
p
| The order of the dictionaries is also the lookup order so if your
| language's norm exceptions overwrite any of the global exceptions, they
| should be added first. Also note that the tokenizer exceptions will
| always have priority over the atrribute getters.
+h(3, "lex-attrs") Lexical attributes
p

View File

@ -38,10 +38,7 @@ p
| #[strong natural language understanding] systems, or to
| pre-process text for #[strong deep learning].
+grid-col("half")
+infobox
+label.o-block-small Table of contents
+list("numbers").u-text-small.o-no-block
+table-of-contents
+item #[+a("#features") Features]
+item #[+a("#annotations") Linguistic annotations]
+item #[+a("#annotations-token") Tokenization]