Auto-format [ci skip]

This commit is contained in:
Ines Montani 2021-02-24 22:37:32 +11:00
parent 9e8a7e08c1
commit d2c515354b

View File

@ -36,29 +36,29 @@
"github": "SamEdwardes/spaCyTextBlob",
"pip": "spacytextblob",
"code_example": [
"import spacy",
"from spacytextblob.spacytextblob import SpacyTextBlob",
"",
"nlp = spacy.load('en_core_web_sm')",
"spacy_text_blob = SpacyTextBlob()",
"nlp.add_pipe(spacy_text_blob)",
"text = 'I had a really horrible day. It was the worst day ever! But every now and then I have a really good day that makes me happy.'",
"doc = nlp(text)",
"doc._.sentiment.polarity # Polarity: -0.125",
"doc._.sentiment.subjectivity # Sujectivity: 0.9",
"doc._.sentiment.assessments # Assessments: [(['really', 'horrible'], -1.0, 1.0, None), (['worst', '!'], -1.0, 1.0, None), (['really', 'good'], 0.7, 0.6000000000000001, None), (['happy'], 0.8, 1.0, None)]"
"import spacy",
"from spacytextblob.spacytextblob import SpacyTextBlob",
"",
"nlp = spacy.load('en_core_web_sm')",
"spacy_text_blob = SpacyTextBlob()",
"nlp.add_pipe(spacy_text_blob)",
"text = 'I had a really horrible day. It was the worst day ever! But every now and then I have a really good day that makes me happy.'",
"doc = nlp(text)",
"doc._.sentiment.polarity # Polarity: -0.125",
"doc._.sentiment.subjectivity # Sujectivity: 0.9",
"doc._.sentiment.assessments # Assessments: [(['really', 'horrible'], -1.0, 1.0, None), (['worst', '!'], -1.0, 1.0, None), (['really', 'good'], 0.7, 0.6000000000000001, None), (['happy'], 0.8, 1.0, None)]"
],
"code_language": "python",
"url": "https://spacytextblob.netlify.app/",
"author": "Sam Edwardes",
"author_links": {
"twitter": "TheReaLSamlam",
"github": "SamEdwardes",
"website": "https://samedwardes.com"
"twitter": "TheReaLSamlam",
"github": "SamEdwardes",
"website": "https://samedwardes.com"
},
"category": ["pipeline"],
"tags": ["sentiment", "textblob"]
},
},
{
"id": "spacy-ray",
"title": "spacy-ray",
@ -2602,14 +2602,14 @@
"description": "A spaCy rule-based pipeline for identifying positive cases of COVID-19 from clinical text. A version of this system was deployed as part of the US Department of Veterans Affairs biosurveillance response to COVID-19.",
"pip": "cov-bsv",
"code_example": [
"import cov_bsv",
"",
"nlp = cov_bsv.load()",
"doc = nlp('Pt tested for COVID-19. His wife was recently diagnosed with novel coronavirus. SARS-COV-2: Detected')",
"",
"print(doc.ents)",
"print(doc._.cov_classification)",
"cov_bsv.visualize_doc(doc)"
"import cov_bsv",
"",
"nlp = cov_bsv.load()",
"doc = nlp('Pt tested for COVID-19. His wife was recently diagnosed with novel coronavirus. SARS-COV-2: Detected')",
"",
"print(doc.ents)",
"print(doc._.cov_classification)",
"cov_bsv.visualize_doc(doc)"
],
"category": ["pipeline", "standalone", "biomedical", "scientific"],
"tags": ["clinical", "epidemiology", "covid-19", "surveillance"],
@ -2627,18 +2627,18 @@
"description": "A toolkit for clinical NLP with spaCy. Features include sentence splitting, section detection, and asserting negation, family history, and uncertainty.",
"pip": "medspacy",
"code_example": [
"import medspacy",
"from medspacy.ner import TargetRule",
"",
"nlp = medspacy.load()",
"print(nlp.pipe_names)",
"",
"nlp.get_pipe('target_matcher').add([TargetRule('stroke', 'CONDITION'), TargetRule('diabetes', 'CONDITION'), TargetRule('pna', 'CONDITION')])",
"doc = nlp('Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.')",
"",
"for ent in doc.ents:",
" print(ent, ent._.is_negated, ent._.is_family, ent._.is_historical)",
"medspacy.visualization.visualize_ent(doc)"
"import medspacy",
"from medspacy.ner import TargetRule",
"",
"nlp = medspacy.load()",
"print(nlp.pipe_names)",
"",
"nlp.get_pipe('target_matcher').add([TargetRule('stroke', 'CONDITION'), TargetRule('diabetes', 'CONDITION'), TargetRule('pna', 'CONDITION')])",
"doc = nlp('Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.')",
"",
"for ent in doc.ents:",
" print(ent, ent._.is_negated, ent._.is_family, ent._.is_historical)",
"medspacy.visualization.visualize_ent(doc)"
],
"category": ["biomedical", "scientific", "research"],
"tags": ["clinical"],
@ -2647,14 +2647,14 @@
"github": "medspacy"
}
},
{
{
"id": "rita-dsl",
"title": "RITA DSL",
"slogan": "Domain Specific Language for creating language rules",
"github": "zaibacu/rita-dsl",
"description": "A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format",
"pip": "rita-dsl",
"thumb": "https://raw.githubusercontent.com/zaibacu/rita-dsl/master/docs/assets/logo-100px.png",
"thumb": "https://raw.githubusercontent.com/zaibacu/rita-dsl/master/docs/assets/logo-100px.png",
"code_language": "python",
"code_example": [
"import spacy",
@ -2754,8 +2754,8 @@
"{",
" var lexeme = doc.Vocab[word.Text];",
" Console.WriteLine($@\"{lexeme.Text} {lexeme.Orth} {lexeme.Shape} {lexeme.Prefix} {lexeme.Suffix} {lexeme.IsAlpha} {lexeme.IsDigit} {lexeme.IsTitle} {lexeme.Lang}\");",
"}"
],
"}"
],
"code_language": "csharp",
"author": "Antonio Miras",
"author_links": {
@ -2763,33 +2763,33 @@
},
"category": ["nonpython"]
},
{
"id": "ruts",
"title": "ruTS",
"slogan": "A library for statistics extraction from texts in Russian",
"description": "The library allows extracting the following statistics from a text: basic statistics, readability metrics, lexical diversity metrics, morphological statistics",
"github": "SergeyShk/ruTS",
"pip": "ruts",
"code_example": [
"import spacy",
"import ruts",
"",
"nlp = spacy.load('ru_core_news_sm')",
"nlp.add_pipe('basic', last=True)",
"doc = nlp('мама мыла раму')",
"doc._.basic.get_stats()"
],
"code_language": "python",
"thumb": "https://habrastorage.org/webt/6z/le/fz/6zlefzjavzoqw_wymz7v3pwgfp4.png",
"image": "https://clipartart.com/images/free-tree-roots-clipart-black-and-white-2.png",
"author": "Sergey Shkarin",
"author_links": {
"twitter": "shk_sergey",
"github": "SergeyShk"
},
"category": ["pipeline", "standalone"],
"tags": ["Text Analytics", "Russian"]
}
{
"id": "ruts",
"title": "ruTS",
"slogan": "A library for statistics extraction from texts in Russian",
"description": "The library allows extracting the following statistics from a text: basic statistics, readability metrics, lexical diversity metrics, morphological statistics",
"github": "SergeyShk/ruTS",
"pip": "ruts",
"code_example": [
"import spacy",
"import ruts",
"",
"nlp = spacy.load('ru_core_news_sm')",
"nlp.add_pipe('basic', last=True)",
"doc = nlp('мама мыла раму')",
"doc._.basic.get_stats()"
],
"code_language": "python",
"thumb": "https://habrastorage.org/webt/6z/le/fz/6zlefzjavzoqw_wymz7v3pwgfp4.png",
"image": "https://clipartart.com/images/free-tree-roots-clipart-black-and-white-2.png",
"author": "Sergey Shkarin",
"author_links": {
"twitter": "shk_sergey",
"github": "SergeyShk"
},
"category": ["pipeline", "standalone"],
"tags": ["Text Analytics", "Russian"]
}
],
"categories": [