Auto-format [ci skip]

This commit is contained in:
Ines Montani 2021-02-24 22:37:32 +11:00
parent 9e8a7e08c1
commit d2c515354b

View File

@ -36,29 +36,29 @@
"github": "SamEdwardes/spaCyTextBlob", "github": "SamEdwardes/spaCyTextBlob",
"pip": "spacytextblob", "pip": "spacytextblob",
"code_example": [ "code_example": [
"import spacy", "import spacy",
"from spacytextblob.spacytextblob import SpacyTextBlob", "from spacytextblob.spacytextblob import SpacyTextBlob",
"", "",
"nlp = spacy.load('en_core_web_sm')", "nlp = spacy.load('en_core_web_sm')",
"spacy_text_blob = SpacyTextBlob()", "spacy_text_blob = SpacyTextBlob()",
"nlp.add_pipe(spacy_text_blob)", "nlp.add_pipe(spacy_text_blob)",
"text = 'I had a really horrible day. It was the worst day ever! But every now and then I have a really good day that makes me happy.'", "text = 'I had a really horrible day. It was the worst day ever! But every now and then I have a really good day that makes me happy.'",
"doc = nlp(text)", "doc = nlp(text)",
"doc._.sentiment.polarity # Polarity: -0.125", "doc._.sentiment.polarity # Polarity: -0.125",
"doc._.sentiment.subjectivity # Sujectivity: 0.9", "doc._.sentiment.subjectivity # Sujectivity: 0.9",
"doc._.sentiment.assessments # Assessments: [(['really', 'horrible'], -1.0, 1.0, None), (['worst', '!'], -1.0, 1.0, None), (['really', 'good'], 0.7, 0.6000000000000001, None), (['happy'], 0.8, 1.0, None)]" "doc._.sentiment.assessments # Assessments: [(['really', 'horrible'], -1.0, 1.0, None), (['worst', '!'], -1.0, 1.0, None), (['really', 'good'], 0.7, 0.6000000000000001, None), (['happy'], 0.8, 1.0, None)]"
], ],
"code_language": "python", "code_language": "python",
"url": "https://spacytextblob.netlify.app/", "url": "https://spacytextblob.netlify.app/",
"author": "Sam Edwardes", "author": "Sam Edwardes",
"author_links": { "author_links": {
"twitter": "TheReaLSamlam", "twitter": "TheReaLSamlam",
"github": "SamEdwardes", "github": "SamEdwardes",
"website": "https://samedwardes.com" "website": "https://samedwardes.com"
}, },
"category": ["pipeline"], "category": ["pipeline"],
"tags": ["sentiment", "textblob"] "tags": ["sentiment", "textblob"]
}, },
{ {
"id": "spacy-ray", "id": "spacy-ray",
"title": "spacy-ray", "title": "spacy-ray",
@ -2602,14 +2602,14 @@
"description": "A spaCy rule-based pipeline for identifying positive cases of COVID-19 from clinical text. A version of this system was deployed as part of the US Department of Veterans Affairs biosurveillance response to COVID-19.", "description": "A spaCy rule-based pipeline for identifying positive cases of COVID-19 from clinical text. A version of this system was deployed as part of the US Department of Veterans Affairs biosurveillance response to COVID-19.",
"pip": "cov-bsv", "pip": "cov-bsv",
"code_example": [ "code_example": [
"import cov_bsv", "import cov_bsv",
"", "",
"nlp = cov_bsv.load()", "nlp = cov_bsv.load()",
"doc = nlp('Pt tested for COVID-19. His wife was recently diagnosed with novel coronavirus. SARS-COV-2: Detected')", "doc = nlp('Pt tested for COVID-19. His wife was recently diagnosed with novel coronavirus. SARS-COV-2: Detected')",
"", "",
"print(doc.ents)", "print(doc.ents)",
"print(doc._.cov_classification)", "print(doc._.cov_classification)",
"cov_bsv.visualize_doc(doc)" "cov_bsv.visualize_doc(doc)"
], ],
"category": ["pipeline", "standalone", "biomedical", "scientific"], "category": ["pipeline", "standalone", "biomedical", "scientific"],
"tags": ["clinical", "epidemiology", "covid-19", "surveillance"], "tags": ["clinical", "epidemiology", "covid-19", "surveillance"],
@ -2627,18 +2627,18 @@
"description": "A toolkit for clinical NLP with spaCy. Features include sentence splitting, section detection, and asserting negation, family history, and uncertainty.", "description": "A toolkit for clinical NLP with spaCy. Features include sentence splitting, section detection, and asserting negation, family history, and uncertainty.",
"pip": "medspacy", "pip": "medspacy",
"code_example": [ "code_example": [
"import medspacy", "import medspacy",
"from medspacy.ner import TargetRule", "from medspacy.ner import TargetRule",
"", "",
"nlp = medspacy.load()", "nlp = medspacy.load()",
"print(nlp.pipe_names)", "print(nlp.pipe_names)",
"", "",
"nlp.get_pipe('target_matcher').add([TargetRule('stroke', 'CONDITION'), TargetRule('diabetes', 'CONDITION'), TargetRule('pna', 'CONDITION')])", "nlp.get_pipe('target_matcher').add([TargetRule('stroke', 'CONDITION'), TargetRule('diabetes', 'CONDITION'), TargetRule('pna', 'CONDITION')])",
"doc = nlp('Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.')", "doc = nlp('Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.')",
"", "",
"for ent in doc.ents:", "for ent in doc.ents:",
" print(ent, ent._.is_negated, ent._.is_family, ent._.is_historical)", " print(ent, ent._.is_negated, ent._.is_family, ent._.is_historical)",
"medspacy.visualization.visualize_ent(doc)" "medspacy.visualization.visualize_ent(doc)"
], ],
"category": ["biomedical", "scientific", "research"], "category": ["biomedical", "scientific", "research"],
"tags": ["clinical"], "tags": ["clinical"],
@ -2647,14 +2647,14 @@
"github": "medspacy" "github": "medspacy"
} }
}, },
{ {
"id": "rita-dsl", "id": "rita-dsl",
"title": "RITA DSL", "title": "RITA DSL",
"slogan": "Domain Specific Language for creating language rules", "slogan": "Domain Specific Language for creating language rules",
"github": "zaibacu/rita-dsl", "github": "zaibacu/rita-dsl",
"description": "A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format", "description": "A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format",
"pip": "rita-dsl", "pip": "rita-dsl",
"thumb": "https://raw.githubusercontent.com/zaibacu/rita-dsl/master/docs/assets/logo-100px.png", "thumb": "https://raw.githubusercontent.com/zaibacu/rita-dsl/master/docs/assets/logo-100px.png",
"code_language": "python", "code_language": "python",
"code_example": [ "code_example": [
"import spacy", "import spacy",
@ -2763,33 +2763,33 @@
}, },
"category": ["nonpython"] "category": ["nonpython"]
}, },
{ {
"id": "ruts", "id": "ruts",
"title": "ruTS", "title": "ruTS",
"slogan": "A library for statistics extraction from texts in Russian", "slogan": "A library for statistics extraction from texts in Russian",
"description": "The library allows extracting the following statistics from a text: basic statistics, readability metrics, lexical diversity metrics, morphological statistics", "description": "The library allows extracting the following statistics from a text: basic statistics, readability metrics, lexical diversity metrics, morphological statistics",
"github": "SergeyShk/ruTS", "github": "SergeyShk/ruTS",
"pip": "ruts", "pip": "ruts",
"code_example": [ "code_example": [
"import spacy", "import spacy",
"import ruts", "import ruts",
"", "",
"nlp = spacy.load('ru_core_news_sm')", "nlp = spacy.load('ru_core_news_sm')",
"nlp.add_pipe('basic', last=True)", "nlp.add_pipe('basic', last=True)",
"doc = nlp('мама мыла раму')", "doc = nlp('мама мыла раму')",
"doc._.basic.get_stats()" "doc._.basic.get_stats()"
], ],
"code_language": "python", "code_language": "python",
"thumb": "https://habrastorage.org/webt/6z/le/fz/6zlefzjavzoqw_wymz7v3pwgfp4.png", "thumb": "https://habrastorage.org/webt/6z/le/fz/6zlefzjavzoqw_wymz7v3pwgfp4.png",
"image": "https://clipartart.com/images/free-tree-roots-clipart-black-and-white-2.png", "image": "https://clipartart.com/images/free-tree-roots-clipart-black-and-white-2.png",
"author": "Sergey Shkarin", "author": "Sergey Shkarin",
"author_links": { "author_links": {
"twitter": "shk_sergey", "twitter": "shk_sergey",
"github": "SergeyShk" "github": "SergeyShk"
}, },
"category": ["pipeline", "standalone"], "category": ["pipeline", "standalone"],
"tags": ["Text Analytics", "Russian"] "tags": ["Text Analytics", "Russian"]
} }
], ],
"categories": [ "categories": [