mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Fix formatting
This commit is contained in:
		
							parent
							
								
									8eb0b7b779
								
							
						
					
					
						commit
						d2d35b63b7
					
				|  | @ -48,7 +48,7 @@ from .parts_of_speech import X | |||
| 
 | ||||
| 
 | ||||
| class SentenceSegmenter(object): | ||||
|     '''A simple spaCy hook, to allow custom sentence boundary detection logic | ||||
|     """A simple spaCy hook, to allow custom sentence boundary detection logic | ||||
|     (that doesn't require the dependency parse). | ||||
| 
 | ||||
|     To change the sentence boundary detection strategy, pass a generator | ||||
|  | @ -57,7 +57,7 @@ class SentenceSegmenter(object): | |||
| 
 | ||||
|     Sentence detection strategies should be generators that take `Doc` objects | ||||
|     and yield `Span` objects for each sentence. | ||||
|     ''' | ||||
|     """ | ||||
|     name = 'sbd' | ||||
| 
 | ||||
|     def __init__(self, vocab, strategy=None): | ||||
|  | @ -89,30 +89,30 @@ class BaseThincComponent(object): | |||
| 
 | ||||
|     @classmethod | ||||
|     def Model(cls, *shape, **kwargs): | ||||
|         '''Initialize a model for the pipe.''' | ||||
|         """Initialize a model for the pipe.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __init__(self, vocab, model=True, **cfg): | ||||
|         '''Create a new pipe instance.''' | ||||
|         """Create a new pipe instance.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __call__(self, doc): | ||||
|         '''Apply the pipe to one document. The document is | ||||
|         """Apply the pipe to one document. The document is | ||||
|         modified in-place, and returned. | ||||
|          | ||||
| 
 | ||||
|         Both __call__ and pipe should delegate to the `predict()` | ||||
|         and `set_annotations()` methods. | ||||
|         ''' | ||||
|         """ | ||||
|         scores = self.predict([doc]) | ||||
|         self.set_annotations([doc], scores) | ||||
|         return doc | ||||
| 
 | ||||
|     def pipe(self, stream, batch_size=128, n_threads=-1): | ||||
|         '''Apply the pipe to a stream of documents. | ||||
|         """Apply the pipe to a stream of documents. | ||||
| 
 | ||||
|         Both __call__ and pipe should delegate to the `predict()` | ||||
|         and `set_annotations()` methods. | ||||
|         ''' | ||||
|         """ | ||||
|         for docs in cytoolz.partition_all(batch_size, stream): | ||||
|             docs = list(docs) | ||||
|             scores = self.predict(docs) | ||||
|  | @ -120,43 +120,43 @@ class BaseThincComponent(object): | |||
|             yield from docs | ||||
| 
 | ||||
|     def predict(self, docs): | ||||
|         '''Apply the pipeline's model to a batch of docs, without | ||||
|         """Apply the pipeline's model to a batch of docs, without | ||||
|         modifying them. | ||||
|         ''' | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def set_annotations(self, docs, scores): | ||||
|         '''Modify a batch of documents, using pre-computed scores.''' | ||||
|         """Modify a batch of documents, using pre-computed scores.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def update(self, docs, golds, drop=0., sgd=None, losses=None): | ||||
|         '''Learn from a batch of documents and gold-standard information, | ||||
|         """Learn from a batch of documents and gold-standard information, | ||||
|         updating the pipe's model. | ||||
| 
 | ||||
|         Delegates to predict() and get_loss(). | ||||
|         ''' | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def get_loss(self, docs, golds, scores): | ||||
|         '''Find the loss and gradient of loss for the batch of | ||||
|         documents and their predicted scores.''' | ||||
|         """Find the loss and gradient of loss for the batch of | ||||
|         documents and their predicted scores.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def begin_training(self, gold_tuples=tuple(), pipeline=None): | ||||
|         '''Initialize the pipe for training, using data exampes if available. | ||||
|         If no model has been initialized yet, the model is added.''' | ||||
|         """Initialize the pipe for training, using data exampes if available. | ||||
|         If no model has been initialized yet, the model is added.""" | ||||
|         if self.model is True: | ||||
|             self.model = self.Model(**self.cfg) | ||||
|         link_vectors_to_models(self.vocab) | ||||
| 
 | ||||
|     def use_params(self, params): | ||||
|         '''Modify the pipe's model, to use the given parameter values. | ||||
|         ''' | ||||
|         """Modify the pipe's model, to use the given parameter values. | ||||
|         """ | ||||
|         with self.model.use_params(params): | ||||
|             yield | ||||
| 
 | ||||
|     def to_bytes(self, **exclude): | ||||
|         '''Serialize the pipe to a bytestring.''' | ||||
|         """Serialize the pipe to a bytestring.""" | ||||
|         serialize = OrderedDict(( | ||||
|             ('cfg', lambda: json_dumps(self.cfg)), | ||||
|             ('model', lambda: self.model.to_bytes()), | ||||
|  | @ -165,7 +165,7 @@ class BaseThincComponent(object): | |||
|         return util.to_bytes(serialize, exclude) | ||||
| 
 | ||||
|     def from_bytes(self, bytes_data, **exclude): | ||||
|         '''Load the pipe from a bytestring.''' | ||||
|         """Load the pipe from a bytestring.""" | ||||
|         def load_model(b): | ||||
|             if self.model is True: | ||||
|                 self.cfg['pretrained_dims'] = self.vocab.vectors_length | ||||
|  | @ -181,7 +181,7 @@ class BaseThincComponent(object): | |||
|         return self | ||||
| 
 | ||||
|     def to_disk(self, path, **exclude): | ||||
|         '''Serialize the pipe to disk.''' | ||||
|         """Serialize the pipe to disk.""" | ||||
|         serialize = OrderedDict(( | ||||
|             ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), | ||||
|             ('vocab', lambda p: self.vocab.to_disk(p)), | ||||
|  | @ -190,7 +190,7 @@ class BaseThincComponent(object): | |||
|         util.to_disk(path, serialize, exclude) | ||||
| 
 | ||||
|     def from_disk(self, path, **exclude): | ||||
|         '''Load the pipe from disk.''' | ||||
|         """Load the pipe from disk.""" | ||||
|         def load_model(p): | ||||
|             if self.model is True: | ||||
|                 self.cfg['pretrained_dims'] = self.vocab.vectors_length | ||||
|  | @ -596,7 +596,7 @@ class SimilarityHook(BaseThincComponent): | |||
|         return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length)) | ||||
| 
 | ||||
|     def __call__(self, doc): | ||||
|         '''Install similarity hook''' | ||||
|         """Install similarity hook""" | ||||
|         doc.user_hooks['similarity'] = self.predict | ||||
|         return doc | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user