mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Fix formatting
This commit is contained in:
		
							parent
							
								
									8eb0b7b779
								
							
						
					
					
						commit
						d2d35b63b7
					
				|  | @ -48,7 +48,7 @@ from .parts_of_speech import X | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class SentenceSegmenter(object): | class SentenceSegmenter(object): | ||||||
|     '''A simple spaCy hook, to allow custom sentence boundary detection logic |     """A simple spaCy hook, to allow custom sentence boundary detection logic | ||||||
|     (that doesn't require the dependency parse). |     (that doesn't require the dependency parse). | ||||||
| 
 | 
 | ||||||
|     To change the sentence boundary detection strategy, pass a generator |     To change the sentence boundary detection strategy, pass a generator | ||||||
|  | @ -57,7 +57,7 @@ class SentenceSegmenter(object): | ||||||
| 
 | 
 | ||||||
|     Sentence detection strategies should be generators that take `Doc` objects |     Sentence detection strategies should be generators that take `Doc` objects | ||||||
|     and yield `Span` objects for each sentence. |     and yield `Span` objects for each sentence. | ||||||
|     ''' |     """ | ||||||
|     name = 'sbd' |     name = 'sbd' | ||||||
| 
 | 
 | ||||||
|     def __init__(self, vocab, strategy=None): |     def __init__(self, vocab, strategy=None): | ||||||
|  | @ -89,30 +89,30 @@ class BaseThincComponent(object): | ||||||
| 
 | 
 | ||||||
|     @classmethod |     @classmethod | ||||||
|     def Model(cls, *shape, **kwargs): |     def Model(cls, *shape, **kwargs): | ||||||
|         '''Initialize a model for the pipe.''' |         """Initialize a model for the pipe.""" | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def __init__(self, vocab, model=True, **cfg): |     def __init__(self, vocab, model=True, **cfg): | ||||||
|         '''Create a new pipe instance.''' |         """Create a new pipe instance.""" | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def __call__(self, doc): |     def __call__(self, doc): | ||||||
|         '''Apply the pipe to one document. The document is |         """Apply the pipe to one document. The document is | ||||||
|         modified in-place, and returned. |         modified in-place, and returned. | ||||||
| 
 | 
 | ||||||
|         Both __call__ and pipe should delegate to the `predict()` |         Both __call__ and pipe should delegate to the `predict()` | ||||||
|         and `set_annotations()` methods. |         and `set_annotations()` methods. | ||||||
|         ''' |         """ | ||||||
|         scores = self.predict([doc]) |         scores = self.predict([doc]) | ||||||
|         self.set_annotations([doc], scores) |         self.set_annotations([doc], scores) | ||||||
|         return doc |         return doc | ||||||
| 
 | 
 | ||||||
|     def pipe(self, stream, batch_size=128, n_threads=-1): |     def pipe(self, stream, batch_size=128, n_threads=-1): | ||||||
|         '''Apply the pipe to a stream of documents. |         """Apply the pipe to a stream of documents. | ||||||
| 
 | 
 | ||||||
|         Both __call__ and pipe should delegate to the `predict()` |         Both __call__ and pipe should delegate to the `predict()` | ||||||
|         and `set_annotations()` methods. |         and `set_annotations()` methods. | ||||||
|         ''' |         """ | ||||||
|         for docs in cytoolz.partition_all(batch_size, stream): |         for docs in cytoolz.partition_all(batch_size, stream): | ||||||
|             docs = list(docs) |             docs = list(docs) | ||||||
|             scores = self.predict(docs) |             scores = self.predict(docs) | ||||||
|  | @ -120,43 +120,43 @@ class BaseThincComponent(object): | ||||||
|             yield from docs |             yield from docs | ||||||
| 
 | 
 | ||||||
|     def predict(self, docs): |     def predict(self, docs): | ||||||
|         '''Apply the pipeline's model to a batch of docs, without |         """Apply the pipeline's model to a batch of docs, without | ||||||
|         modifying them. |         modifying them. | ||||||
|         ''' |         """ | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def set_annotations(self, docs, scores): |     def set_annotations(self, docs, scores): | ||||||
|         '''Modify a batch of documents, using pre-computed scores.''' |         """Modify a batch of documents, using pre-computed scores.""" | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def update(self, docs, golds, drop=0., sgd=None, losses=None): |     def update(self, docs, golds, drop=0., sgd=None, losses=None): | ||||||
|         '''Learn from a batch of documents and gold-standard information, |         """Learn from a batch of documents and gold-standard information, | ||||||
|         updating the pipe's model. |         updating the pipe's model. | ||||||
| 
 | 
 | ||||||
|         Delegates to predict() and get_loss(). |         Delegates to predict() and get_loss(). | ||||||
|         ''' |         """ | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def get_loss(self, docs, golds, scores): |     def get_loss(self, docs, golds, scores): | ||||||
|         '''Find the loss and gradient of loss for the batch of |         """Find the loss and gradient of loss for the batch of | ||||||
|         documents and their predicted scores.''' |         documents and their predicted scores.""" | ||||||
|         raise NotImplementedError |         raise NotImplementedError | ||||||
| 
 | 
 | ||||||
|     def begin_training(self, gold_tuples=tuple(), pipeline=None): |     def begin_training(self, gold_tuples=tuple(), pipeline=None): | ||||||
|         '''Initialize the pipe for training, using data exampes if available. |         """Initialize the pipe for training, using data exampes if available. | ||||||
|         If no model has been initialized yet, the model is added.''' |         If no model has been initialized yet, the model is added.""" | ||||||
|         if self.model is True: |         if self.model is True: | ||||||
|             self.model = self.Model(**self.cfg) |             self.model = self.Model(**self.cfg) | ||||||
|         link_vectors_to_models(self.vocab) |         link_vectors_to_models(self.vocab) | ||||||
| 
 | 
 | ||||||
|     def use_params(self, params): |     def use_params(self, params): | ||||||
|         '''Modify the pipe's model, to use the given parameter values. |         """Modify the pipe's model, to use the given parameter values. | ||||||
|         ''' |         """ | ||||||
|         with self.model.use_params(params): |         with self.model.use_params(params): | ||||||
|             yield |             yield | ||||||
| 
 | 
 | ||||||
|     def to_bytes(self, **exclude): |     def to_bytes(self, **exclude): | ||||||
|         '''Serialize the pipe to a bytestring.''' |         """Serialize the pipe to a bytestring.""" | ||||||
|         serialize = OrderedDict(( |         serialize = OrderedDict(( | ||||||
|             ('cfg', lambda: json_dumps(self.cfg)), |             ('cfg', lambda: json_dumps(self.cfg)), | ||||||
|             ('model', lambda: self.model.to_bytes()), |             ('model', lambda: self.model.to_bytes()), | ||||||
|  | @ -165,7 +165,7 @@ class BaseThincComponent(object): | ||||||
|         return util.to_bytes(serialize, exclude) |         return util.to_bytes(serialize, exclude) | ||||||
| 
 | 
 | ||||||
|     def from_bytes(self, bytes_data, **exclude): |     def from_bytes(self, bytes_data, **exclude): | ||||||
|         '''Load the pipe from a bytestring.''' |         """Load the pipe from a bytestring.""" | ||||||
|         def load_model(b): |         def load_model(b): | ||||||
|             if self.model is True: |             if self.model is True: | ||||||
|                 self.cfg['pretrained_dims'] = self.vocab.vectors_length |                 self.cfg['pretrained_dims'] = self.vocab.vectors_length | ||||||
|  | @ -181,7 +181,7 @@ class BaseThincComponent(object): | ||||||
|         return self |         return self | ||||||
| 
 | 
 | ||||||
|     def to_disk(self, path, **exclude): |     def to_disk(self, path, **exclude): | ||||||
|         '''Serialize the pipe to disk.''' |         """Serialize the pipe to disk.""" | ||||||
|         serialize = OrderedDict(( |         serialize = OrderedDict(( | ||||||
|             ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), |             ('cfg', lambda p: p.open('w').write(json_dumps(self.cfg))), | ||||||
|             ('vocab', lambda p: self.vocab.to_disk(p)), |             ('vocab', lambda p: self.vocab.to_disk(p)), | ||||||
|  | @ -190,7 +190,7 @@ class BaseThincComponent(object): | ||||||
|         util.to_disk(path, serialize, exclude) |         util.to_disk(path, serialize, exclude) | ||||||
| 
 | 
 | ||||||
|     def from_disk(self, path, **exclude): |     def from_disk(self, path, **exclude): | ||||||
|         '''Load the pipe from disk.''' |         """Load the pipe from disk.""" | ||||||
|         def load_model(p): |         def load_model(p): | ||||||
|             if self.model is True: |             if self.model is True: | ||||||
|                 self.cfg['pretrained_dims'] = self.vocab.vectors_length |                 self.cfg['pretrained_dims'] = self.vocab.vectors_length | ||||||
|  | @ -596,7 +596,7 @@ class SimilarityHook(BaseThincComponent): | ||||||
|         return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length)) |         return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length)) | ||||||
| 
 | 
 | ||||||
|     def __call__(self, doc): |     def __call__(self, doc): | ||||||
|         '''Install similarity hook''' |         """Install similarity hook""" | ||||||
|         doc.user_hooks['similarity'] = self.predict |         doc.user_hooks['similarity'] = self.predict | ||||||
|         return doc |         return doc | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user