From d2ffb406adf5ddcf68fdd6290c1a556517857392 Mon Sep 17 00:00:00 2001 From: Peter B <5107405+pmbaumgartner@users.noreply.github.com> Date: Tue, 17 Mar 2020 08:30:29 -0400 Subject: [PATCH] =?UTF-8?q?add=20gobbli=20to=20spacy-universe=20?= =?UTF-8?q?=F0=9F=A5=B3?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- website/meta/universe.json | 38 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) diff --git a/website/meta/universe.json b/website/meta/universe.json index 91361e234..9138f8819 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -2000,6 +2000,44 @@ }, "category": ["pipeline"], "tags": ["syllables", "multilingual"] + }, + { + "id": "gobbli", + "title": "gobbli", + "slogan": "Deep learning for text classification doesn't have to be scary", + "description": "gobbli is a Python library which wraps several modern deep learning models in a uniform interface that makes it easy to evaluate feasibility and conduct analyses. It leverages the abstractive powers of Docker to hide nearly all dependency management and functional differences between models from the user. It also contains an interactive app for exploring text data and evaluating classification models.", + "url": "https://github.com/rtiinternational/gobbli", + "github": "rtiinternational/gobbli", + "pip": "gobbli", + "thumb": "https://i.postimg.cc/NGpzhrdr/gobbli-lg.png", + "code_example": [ + "from gobbli.io import PredictInput, TrainInput", + "from gobbli.model.bert import BERT", + "", + "train_input = TrainInput(", + " X_train=['This is a training document.', 'This is another training document.'],", + " y_train=['0', '1'],", + " X_valid=['This is a validation sentence.', 'This is another validation sentence.'],", + " y_valid=['1', '0'],", + ")", + "", + "clf = BERT()", + "", + "# Set up classifier resources -- Docker image, etc.", + "clf.build()", + "", + "# Train model", + "train_output = clf.train(train_input)", + "", + "predict_input = PredictInput(", + " X=['Which class is this document?'],", + " labels=train_output.labels,", + " checkpoint=train_output.checkpoint,", + ")", + "", + "predict_output = clf.predict(predict_input)" + ], + "category": ["standalone"] } ],