mirror of
https://github.com/explosion/spaCy.git
synced 2025-06-03 20:53:12 +03:00
Support registered vectors
This commit is contained in:
parent
476a2e7a0a
commit
d3b8b9162c
|
@ -26,6 +26,9 @@ batch_size = 1000
|
|||
[nlp.tokenizer]
|
||||
@tokenizers = "spacy.Tokenizer.v1"
|
||||
|
||||
[nlp.vectors]
|
||||
@misc = "spacy.Vectors.v1"
|
||||
|
||||
# The pipeline components and their models
|
||||
[components]
|
||||
|
||||
|
|
|
@ -549,6 +549,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
|||
"during training, make sure to include it in 'annotating components'")
|
||||
|
||||
# New errors added in v3.x
|
||||
E849 = ("Unable to {action} vectors for vectors of type {vectors_type}.")
|
||||
E850 = ("The PretrainVectors objective currently only supports default or "
|
||||
"floret vectors, not {mode} vectors.")
|
||||
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "
|
||||
|
|
|
@ -20,6 +20,8 @@ import traceback
|
|||
|
||||
from . import ty
|
||||
from .tokens.underscore import Underscore
|
||||
from .strings import StringStore
|
||||
from .vectors import BaseVectors
|
||||
from .vocab import Vocab, create_vocab
|
||||
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||
from .training import Example, validate_examples
|
||||
|
@ -134,6 +136,7 @@ class Language:
|
|||
max_length: int = 10**6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
|
||||
batch_size: int = 1000,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
|
@ -174,6 +177,10 @@ class Language:
|
|||
if vocab is True:
|
||||
vectors_name = meta.get("vectors", {}).get("name")
|
||||
vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name)
|
||||
if not create_vectors:
|
||||
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
|
||||
create_vectors = registry.resolve(vectors_cfg)["vectors"]
|
||||
vocab.vectors = create_vectors(vocab)
|
||||
else:
|
||||
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
|
||||
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
|
||||
|
@ -1750,6 +1757,7 @@ class Language:
|
|||
filled["nlp"], validate=validate, schema=ConfigSchemaNlp
|
||||
)
|
||||
create_tokenizer = resolved_nlp["tokenizer"]
|
||||
create_vectors = resolved_nlp["vectors"]
|
||||
before_creation = resolved_nlp["before_creation"]
|
||||
after_creation = resolved_nlp["after_creation"]
|
||||
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
|
||||
|
@ -1770,7 +1778,7 @@ class Language:
|
|||
# inside stuff like the spacy train function. If we loaded them here,
|
||||
# then we would load them twice at runtime: once when we make from config,
|
||||
# and then again when we load from disk.
|
||||
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta)
|
||||
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, create_vectors=create_vectors, meta=meta)
|
||||
if after_creation is not None:
|
||||
nlp = after_creation(nlp)
|
||||
if not isinstance(nlp, cls):
|
||||
|
|
|
@ -6,7 +6,7 @@ from thinc.api import Model, Ops, registry
|
|||
|
||||
from ..tokens import Doc
|
||||
from ..errors import Errors
|
||||
from ..vectors import Mode
|
||||
from ..vectors import Vectors, Mode
|
||||
from ..vocab import Vocab
|
||||
|
||||
|
||||
|
@ -43,11 +43,14 @@ def forward(
|
|||
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
|
||||
vocab: Vocab = docs[0].vocab
|
||||
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
V = model.ops.asarray(vocab.vectors.data)
|
||||
rows = vocab.vectors.find(keys=keys)
|
||||
V = model.ops.as_contig(V[rows])
|
||||
elif vocab.vectors.mode == Mode.floret:
|
||||
elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
elif hasattr(vocab.vectors, "get_batch"):
|
||||
V = vocab.vectors.get_batch(keys)
|
||||
V = model.ops.as_contig(V)
|
||||
else:
|
||||
|
@ -56,7 +59,7 @@ def forward(
|
|||
vectors_data = model.ops.gemm(V, W, trans2=True)
|
||||
except ValueError:
|
||||
raise RuntimeError(Errors.E896)
|
||||
if vocab.vectors.mode == Mode.default:
|
||||
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
|
||||
# Convert negative indices to 0-vectors
|
||||
# TODO: more options for UNK tokens
|
||||
vectors_data[rows < 0] = 0
|
||||
|
|
|
@ -375,6 +375,7 @@ class ConfigSchemaNlp(BaseModel):
|
|||
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
|
||||
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
|
||||
batch_size: Optional[int] = Field(..., title="Default batch size")
|
||||
vectors: Callable = Field(..., title="Vectors implementation")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Callable
|
||||
cimport numpy as np
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
from cython.operator cimport dereference as deref
|
||||
|
@ -6,7 +8,8 @@ from murmurhash.mrmr cimport hash128_x64
|
|||
|
||||
import functools
|
||||
import numpy
|
||||
from typing import cast
|
||||
from pathlib import Path
|
||||
from typing import cast, TYPE_CHECKING, Union
|
||||
import warnings
|
||||
from enum import Enum
|
||||
import srsly
|
||||
|
@ -21,6 +24,10 @@ from .errors import Errors, Warnings
|
|||
from . import util
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .vocab import Vocab # noqa: F401
|
||||
|
||||
|
||||
def unpickle_vectors(bytes_data):
|
||||
return Vectors().from_bytes(bytes_data)
|
||||
|
||||
|
@ -34,7 +41,51 @@ class Mode(str, Enum):
|
|||
return list(cls.__members__.keys())
|
||||
|
||||
|
||||
cdef class Vectors:
|
||||
cdef class BaseVectors:
|
||||
def __init__(self, *, strings=None):
|
||||
# Make sure abstract BaseVectors is not instantiated.
|
||||
if self.__class__ == BaseVectors:
|
||||
raise TypeError(
|
||||
Errors.E1046.format(cls_name=self.__class__.__name__)
|
||||
)
|
||||
|
||||
def __getitem__(self, key):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_batch(self, keys):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def add(self, key, *, vector=None):
|
||||
raise NotImplementedError
|
||||
|
||||
# add dummy methods for to_bytes, from_bytes, to_disk and from_disk to
|
||||
# allow serialization
|
||||
def to_bytes(self, **kwargs):
|
||||
return b""
|
||||
|
||||
def from_bytes(self, data: bytes, **kwargs):
|
||||
return self
|
||||
|
||||
def to_disk(self, path: Union[str, Path], **kwargs):
|
||||
return None
|
||||
|
||||
def from_disk(self, path: Union[str, Path], **kwargs):
|
||||
return self
|
||||
|
||||
|
||||
@util.registry.misc("spacy.Vectors.v1")
|
||||
def create_mode_vectors() -> Callable[["Vocab"], BaseVectors]:
|
||||
def vectors_factory(vocab: "Vocab") -> BaseVectors:
|
||||
return Vectors(strings=vocab.strings)
|
||||
|
||||
return vectors_factory
|
||||
|
||||
|
||||
cdef class Vectors(BaseVectors):
|
||||
"""Store, save and load word vectors.
|
||||
|
||||
Vectors data is kept in the vectors.data attribute, which should be an
|
||||
|
|
|
@ -88,8 +88,9 @@ cdef class Vocab:
|
|||
return self._vectors
|
||||
|
||||
def __set__(self, vectors):
|
||||
for s in vectors.strings:
|
||||
self.strings.add(s)
|
||||
if hasattr(vectors, "strings"):
|
||||
for s in vectors.strings:
|
||||
self.strings.add(s)
|
||||
self._vectors = vectors
|
||||
self._vectors.strings = self.strings
|
||||
|
||||
|
@ -188,7 +189,7 @@ cdef class Vocab:
|
|||
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
|
||||
lex.orth = self.strings.add(string)
|
||||
lex.length = len(string)
|
||||
if self.vectors is not None:
|
||||
if self.vectors is not None and hasattr(self.vectors, "key2row"):
|
||||
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
|
||||
else:
|
||||
lex.id = OOV_RANK
|
||||
|
@ -284,12 +285,17 @@ cdef class Vocab:
|
|||
|
||||
@property
|
||||
def vectors_length(self):
|
||||
return self.vectors.shape[1]
|
||||
if hasattr(self.vectors, "shape"):
|
||||
return self.vectors.shape[1]
|
||||
else:
|
||||
return -1
|
||||
|
||||
def reset_vectors(self, *, width=None, shape=None):
|
||||
"""Drop the current vector table. Because all vectors must be the same
|
||||
width, you have to call this to change the size of the vectors.
|
||||
"""
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format("reset", vectors_type=type(self.vectors)))
|
||||
if width is not None and shape is not None:
|
||||
raise ValueError(Errors.E065.format(width=width, shape=shape))
|
||||
elif shape is not None:
|
||||
|
@ -299,6 +305,8 @@ cdef class Vocab:
|
|||
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
|
||||
|
||||
def deduplicate_vectors(self):
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format(action="deduplicate", vectors_type=type(self.vectors)))
|
||||
if self.vectors.mode != VectorsMode.default:
|
||||
raise ValueError(Errors.E858.format(
|
||||
mode=self.vectors.mode,
|
||||
|
@ -352,6 +360,8 @@ cdef class Vocab:
|
|||
|
||||
DOCS: https://spacy.io/api/vocab#prune_vectors
|
||||
"""
|
||||
if not isinstance(self.vectors, Vectors):
|
||||
raise ValueError(Errors.E849.format(action="prune", vectors_type=type(self.vectors)))
|
||||
if self.vectors.mode != VectorsMode.default:
|
||||
raise ValueError(Errors.E858.format(
|
||||
mode=self.vectors.mode,
|
||||
|
@ -400,7 +410,10 @@ cdef class Vocab:
|
|||
orth = self.strings.add(orth)
|
||||
if self.has_vector(orth):
|
||||
return self.vectors[orth]
|
||||
xp = get_array_module(self.vectors.data)
|
||||
if isinstance(self.vectors, Vectors):
|
||||
xp = get_array_module(self.vectors.data)
|
||||
else:
|
||||
xp = get_current_ops().xp
|
||||
vectors = xp.zeros((self.vectors_length,), dtype="f")
|
||||
return vectors
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user