Support registered vectors

This commit is contained in:
Adriane Boyd 2023-03-31 18:25:55 +02:00
parent 476a2e7a0a
commit d3b8b9162c
7 changed files with 92 additions and 12 deletions

View File

@ -26,6 +26,9 @@ batch_size = 1000
[nlp.tokenizer]
@tokenizers = "spacy.Tokenizer.v1"
[nlp.vectors]
@misc = "spacy.Vectors.v1"
# The pipeline components and their models
[components]

View File

@ -549,6 +549,7 @@ class Errors(metaclass=ErrorsWithCodes):
"during training, make sure to include it in 'annotating components'")
# New errors added in v3.x
E849 = ("Unable to {action} vectors for vectors of type {vectors_type}.")
E850 = ("The PretrainVectors objective currently only supports default or "
"floret vectors, not {mode} vectors.")
E851 = ("The 'textcat' component labels should only have values of 0 or 1, "

View File

@ -20,6 +20,8 @@ import traceback
from . import ty
from .tokens.underscore import Underscore
from .strings import StringStore
from .vectors import BaseVectors
from .vocab import Vocab, create_vocab
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
from .training import Example, validate_examples
@ -134,6 +136,7 @@ class Language:
max_length: int = 10**6,
meta: Dict[str, Any] = {},
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
batch_size: int = 1000,
**kwargs,
) -> None:
@ -174,6 +177,10 @@ class Language:
if vocab is True:
vectors_name = meta.get("vectors", {}).get("name")
vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name)
if not create_vectors:
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
create_vectors = registry.resolve(vectors_cfg)["vectors"]
vocab.vectors = create_vectors(vocab)
else:
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
@ -1750,6 +1757,7 @@ class Language:
filled["nlp"], validate=validate, schema=ConfigSchemaNlp
)
create_tokenizer = resolved_nlp["tokenizer"]
create_vectors = resolved_nlp["vectors"]
before_creation = resolved_nlp["before_creation"]
after_creation = resolved_nlp["after_creation"]
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
@ -1770,7 +1778,7 @@ class Language:
# inside stuff like the spacy train function. If we loaded them here,
# then we would load them twice at runtime: once when we make from config,
# and then again when we load from disk.
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta)
nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, create_vectors=create_vectors, meta=meta)
if after_creation is not None:
nlp = after_creation(nlp)
if not isinstance(nlp, cls):

View File

@ -6,7 +6,7 @@ from thinc.api import Model, Ops, registry
from ..tokens import Doc
from ..errors import Errors
from ..vectors import Mode
from ..vectors import Vectors, Mode
from ..vocab import Vocab
@ -43,11 +43,14 @@ def forward(
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
vocab: Vocab = docs[0].vocab
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
if vocab.vectors.mode == Mode.default:
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
V = model.ops.asarray(vocab.vectors.data)
rows = vocab.vectors.find(keys=keys)
V = model.ops.as_contig(V[rows])
elif vocab.vectors.mode == Mode.floret:
elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret:
V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V)
elif hasattr(vocab.vectors, "get_batch"):
V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V)
else:
@ -56,7 +59,7 @@ def forward(
vectors_data = model.ops.gemm(V, W, trans2=True)
except ValueError:
raise RuntimeError(Errors.E896)
if vocab.vectors.mode == Mode.default:
if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default:
# Convert negative indices to 0-vectors
# TODO: more options for UNK tokens
vectors_data[rows < 0] = 0

View File

@ -375,6 +375,7 @@ class ConfigSchemaNlp(BaseModel):
after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed")
after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed")
batch_size: Optional[int] = Field(..., title="Default batch size")
vectors: Callable = Field(..., title="Vectors implementation")
# fmt: on
class Config:

View File

@ -1,3 +1,5 @@
# cython: infer_types=True, profile=True, binding=True
from typing import Callable
cimport numpy as np
from libc.stdint cimport uint32_t, uint64_t
from cython.operator cimport dereference as deref
@ -6,7 +8,8 @@ from murmurhash.mrmr cimport hash128_x64
import functools
import numpy
from typing import cast
from pathlib import Path
from typing import cast, TYPE_CHECKING, Union
import warnings
from enum import Enum
import srsly
@ -21,6 +24,10 @@ from .errors import Errors, Warnings
from . import util
if TYPE_CHECKING:
from .vocab import Vocab # noqa: F401
def unpickle_vectors(bytes_data):
return Vectors().from_bytes(bytes_data)
@ -34,7 +41,51 @@ class Mode(str, Enum):
return list(cls.__members__.keys())
cdef class Vectors:
cdef class BaseVectors:
def __init__(self, *, strings=None):
# Make sure abstract BaseVectors is not instantiated.
if self.__class__ == BaseVectors:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
def __getitem__(self, key):
raise NotImplementedError
def get_batch(self, keys):
raise NotImplementedError
@property
def vectors_length(self):
raise NotImplementedError
def add(self, key, *, vector=None):
raise NotImplementedError
# add dummy methods for to_bytes, from_bytes, to_disk and from_disk to
# allow serialization
def to_bytes(self, **kwargs):
return b""
def from_bytes(self, data: bytes, **kwargs):
return self
def to_disk(self, path: Union[str, Path], **kwargs):
return None
def from_disk(self, path: Union[str, Path], **kwargs):
return self
@util.registry.misc("spacy.Vectors.v1")
def create_mode_vectors() -> Callable[["Vocab"], BaseVectors]:
def vectors_factory(vocab: "Vocab") -> BaseVectors:
return Vectors(strings=vocab.strings)
return vectors_factory
cdef class Vectors(BaseVectors):
"""Store, save and load word vectors.
Vectors data is kept in the vectors.data attribute, which should be an

View File

@ -88,8 +88,9 @@ cdef class Vocab:
return self._vectors
def __set__(self, vectors):
for s in vectors.strings:
self.strings.add(s)
if hasattr(vectors, "strings"):
for s in vectors.strings:
self.strings.add(s)
self._vectors = vectors
self._vectors.strings = self.strings
@ -188,7 +189,7 @@ cdef class Vocab:
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
lex.orth = self.strings.add(string)
lex.length = len(string)
if self.vectors is not None:
if self.vectors is not None and hasattr(self.vectors, "key2row"):
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
else:
lex.id = OOV_RANK
@ -284,12 +285,17 @@ cdef class Vocab:
@property
def vectors_length(self):
return self.vectors.shape[1]
if hasattr(self.vectors, "shape"):
return self.vectors.shape[1]
else:
return -1
def reset_vectors(self, *, width=None, shape=None):
"""Drop the current vector table. Because all vectors must be the same
width, you have to call this to change the size of the vectors.
"""
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format("reset", vectors_type=type(self.vectors)))
if width is not None and shape is not None:
raise ValueError(Errors.E065.format(width=width, shape=shape))
elif shape is not None:
@ -299,6 +305,8 @@ cdef class Vocab:
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
def deduplicate_vectors(self):
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format(action="deduplicate", vectors_type=type(self.vectors)))
if self.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E858.format(
mode=self.vectors.mode,
@ -352,6 +360,8 @@ cdef class Vocab:
DOCS: https://spacy.io/api/vocab#prune_vectors
"""
if not isinstance(self.vectors, Vectors):
raise ValueError(Errors.E849.format(action="prune", vectors_type=type(self.vectors)))
if self.vectors.mode != VectorsMode.default:
raise ValueError(Errors.E858.format(
mode=self.vectors.mode,
@ -400,7 +410,10 @@ cdef class Vocab:
orth = self.strings.add(orth)
if self.has_vector(orth):
return self.vectors[orth]
xp = get_array_module(self.vectors.data)
if isinstance(self.vectors, Vectors):
xp = get_array_module(self.vectors.data)
else:
xp = get_current_ops().xp
vectors = xp.zeros((self.vectors_length,), dtype="f")
return vectors