From d43d92c3658c508d715ebecd6928ed0173294faa Mon Sep 17 00:00:00 2001 From: Paul O'Leary McCann Date: Wed, 21 Dec 2022 15:15:52 +0900 Subject: [PATCH] Move Entity Linker v1 component to spacy-legacy This is a follow up to #11889 that moves the component instead of removing it. In general, we never import from spacy-legacy in spaCy proper. However, to use this component, that kind of import will be necessary. I was able to test this without issues, but is this current import strategy acceptable? Or should we put the component in a registry? --- spacy/pipeline/entity_linker.py | 8 +- spacy/pipeline/legacy/__init__.py | 3 - spacy/pipeline/legacy/entity_linker.py | 422 --------------------- spacy/tests/pipeline/test_entity_linker.py | 3 +- 4 files changed, 9 insertions(+), 427 deletions(-) delete mode 100644 spacy/pipeline/legacy/__init__.py delete mode 100644 spacy/pipeline/legacy/entity_linker.py diff --git a/spacy/pipeline/entity_linker.py b/spacy/pipeline/entity_linker.py index 19c355238..9a13c96f8 100644 --- a/spacy/pipeline/entity_linker.py +++ b/spacy/pipeline/entity_linker.py @@ -13,7 +13,6 @@ from ..kb import KnowledgeBase, Candidate from ..ml import empty_kb from ..tokens import Doc, Span from .pipe import deserialize_config -from .legacy.entity_linker import EntityLinker_v1 from .trainable_pipe import TrainablePipe from ..language import Language from ..vocab import Vocab @@ -120,6 +119,13 @@ def make_entity_linker( """ if not model.attrs.get("include_span_maker", False): + try: + from spacy_legacy.components.entity_linker import EntityLinker_v1 + except: + raise ImportError( + """In order to use v1 of the EntityLinker, you must use + spacy-legacy >=XXX.""" + ) # The only difference in arguments here is that use_gold_ents and threshold aren't available. return EntityLinker_v1( nlp.vocab, diff --git a/spacy/pipeline/legacy/__init__.py b/spacy/pipeline/legacy/__init__.py deleted file mode 100644 index f216840dc..000000000 --- a/spacy/pipeline/legacy/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .entity_linker import EntityLinker_v1 - -__all__ = ["EntityLinker_v1"] diff --git a/spacy/pipeline/legacy/entity_linker.py b/spacy/pipeline/legacy/entity_linker.py deleted file mode 100644 index c14dfa1db..000000000 --- a/spacy/pipeline/legacy/entity_linker.py +++ /dev/null @@ -1,422 +0,0 @@ -# This file is present to provide a prior version of the EntityLinker component -# for backwards compatability. For details see #9669. - -from typing import Optional, Iterable, Callable, Dict, Union, List, Any -from thinc.types import Floats2d -from pathlib import Path -from itertools import islice -import srsly -import random -from thinc.api import CosineDistance, Model, Optimizer -from thinc.api import set_dropout_rate -import warnings - -from ...kb import KnowledgeBase, Candidate -from ...ml import empty_kb -from ...tokens import Doc, Span -from ..pipe import deserialize_config -from ..trainable_pipe import TrainablePipe -from ...language import Language -from ...vocab import Vocab -from ...training import Example, validate_examples, validate_get_examples -from ...errors import Errors, Warnings -from ...util import SimpleFrozenList -from ... import util -from ...scorer import Scorer - -# See #9050 -BACKWARD_OVERWRITE = True - - -def entity_linker_score(examples, **kwargs): - return Scorer.score_links(examples, negative_labels=[EntityLinker_v1.NIL], **kwargs) - - -class EntityLinker_v1(TrainablePipe): - """Pipeline component for named entity linking. - - DOCS: https://spacy.io/api/entitylinker - """ - - NIL = "NIL" # string used to refer to a non-existing link - - def __init__( - self, - vocab: Vocab, - model: Model, - name: str = "entity_linker", - *, - labels_discard: Iterable[str], - n_sents: int, - incl_prior: bool, - incl_context: bool, - entity_vector_length: int, - get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]], - overwrite: bool = BACKWARD_OVERWRITE, - scorer: Optional[Callable] = entity_linker_score, - ) -> None: - """Initialize an entity linker. - - vocab (Vocab): The shared vocabulary. - model (thinc.api.Model): The Thinc Model powering the pipeline component. - name (str): The component instance name, used to add entries to the - losses during training. - labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction. - n_sents (int): The number of neighbouring sentences to take into account. - incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. - incl_context (bool): Whether or not to include the local context in the model. - entity_vector_length (int): Size of encoding vectors in the KB. - get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that - produces a list of candidates, given a certain knowledge base and a textual mention. - scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links. - DOCS: https://spacy.io/api/entitylinker#init - """ - self.vocab = vocab - self.model = model - self.name = name - self.labels_discard = list(labels_discard) - self.n_sents = n_sents - self.incl_prior = incl_prior - self.incl_context = incl_context - self.get_candidates = get_candidates - self.cfg: Dict[str, Any] = {"overwrite": overwrite} - self.distance = CosineDistance(normalize=False) - # how many neighbour sentences to take into account - # create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'. - self.kb = empty_kb(entity_vector_length)(self.vocab) - self.scorer = scorer - - def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): - """Define the KB of this pipe by providing a function that will - create it using this object's vocab.""" - if not callable(kb_loader): - raise ValueError(Errors.E885.format(arg_type=type(kb_loader))) - - self.kb = kb_loader(self.vocab) - - def validate_kb(self) -> None: - # Raise an error if the knowledge base is not initialized. - if self.kb is None: - raise ValueError(Errors.E1018.format(name=self.name)) - if len(self.kb) == 0: - raise ValueError(Errors.E139.format(name=self.name)) - - def initialize( - self, - get_examples: Callable[[], Iterable[Example]], - *, - nlp: Optional[Language] = None, - kb_loader: Optional[Callable[[Vocab], KnowledgeBase]] = None, - ): - """Initialize the pipe for training, using a representative set - of data examples. - - get_examples (Callable[[], Iterable[Example]]): Function that - returns a representative sample of gold-standard Example objects. - nlp (Language): The current nlp object the component is part of. - kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates an InMemoryLookupKB from a Vocab instance. - Note that providing this argument, will overwrite all data accumulated in the current KB. - Use this only when loading a KB as-such from file. - - DOCS: https://spacy.io/api/entitylinker#initialize - """ - validate_get_examples(get_examples, "EntityLinker_v1.initialize") - if kb_loader is not None: - self.set_kb(kb_loader) - self.validate_kb() - nO = self.kb.entity_vector_length - doc_sample = [] - vector_sample = [] - for example in islice(get_examples(), 10): - doc_sample.append(example.x) - vector_sample.append(self.model.ops.alloc1f(nO)) - assert len(doc_sample) > 0, Errors.E923.format(name=self.name) - assert len(vector_sample) > 0, Errors.E923.format(name=self.name) - self.model.initialize( - X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32") - ) - - def update( - self, - examples: Iterable[Example], - *, - drop: float = 0.0, - sgd: Optional[Optimizer] = None, - losses: Optional[Dict[str, float]] = None, - ) -> Dict[str, float]: - """Learn from a batch of documents and gold-standard information, - updating the pipe's model. Delegates to predict and get_loss. - - examples (Iterable[Example]): A batch of Example objects. - drop (float): The dropout rate. - sgd (thinc.api.Optimizer): The optimizer. - losses (Dict[str, float]): Optional record of the loss during training. - Updated using the component name as the key. - RETURNS (Dict[str, float]): The updated losses dictionary. - - DOCS: https://spacy.io/api/entitylinker#update - """ - self.validate_kb() - if losses is None: - losses = {} - losses.setdefault(self.name, 0.0) - if not examples: - return losses - validate_examples(examples, "EntityLinker_v1.update") - sentence_docs = [] - for eg in examples: - sentences = [s for s in eg.reference.sents] - kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True) - for ent in eg.reference.ents: - # KB ID of the first token is the same as the whole span - kb_id = kb_ids[ent.start] - if kb_id: - try: - # find the sentence in the list of sentences. - sent_index = sentences.index(ent.sent) - except AttributeError: - # Catch the exception when ent.sent is None and provide a user-friendly warning - raise RuntimeError(Errors.E030) from None - # get n previous sentences, if there are any - start_sentence = max(0, sent_index - self.n_sents) - # get n posterior sentences, or as many < n as there are - end_sentence = min(len(sentences) - 1, sent_index + self.n_sents) - # get token positions - start_token = sentences[start_sentence].start - end_token = sentences[end_sentence].end - # append that span as a doc to training - sent_doc = eg.predicted[start_token:end_token].as_doc() - sentence_docs.append(sent_doc) - set_dropout_rate(self.model, drop) - if not sentence_docs: - warnings.warn(Warnings.W093.format(name="Entity Linker")) - return losses - sentence_encodings, bp_context = self.model.begin_update(sentence_docs) - loss, d_scores = self.get_loss( - sentence_encodings=sentence_encodings, examples=examples - ) - bp_context(d_scores) - if sgd is not None: - self.finish_update(sgd) - losses[self.name] += loss - return losses - - def get_loss(self, examples: Iterable[Example], sentence_encodings: Floats2d): - validate_examples(examples, "EntityLinker_v1.get_loss") - entity_encodings = [] - for eg in examples: - kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True) - for ent in eg.reference.ents: - kb_id = kb_ids[ent.start] - if kb_id: - entity_encoding = self.kb.get_vector(kb_id) - entity_encodings.append(entity_encoding) - entity_encodings = self.model.ops.asarray2f(entity_encodings) - if sentence_encodings.shape != entity_encodings.shape: - err = Errors.E147.format( - method="get_loss", msg="gold entities do not match up" - ) - raise RuntimeError(err) - gradients = self.distance.get_grad(sentence_encodings, entity_encodings) - loss = self.distance.get_loss(sentence_encodings, entity_encodings) - loss = loss / len(entity_encodings) - return float(loss), gradients - - def predict(self, docs: Iterable[Doc]) -> List[str]: - """Apply the pipeline's model to a batch of docs, without modifying them. - Returns the KB IDs for each entity in each doc, including NIL if there is - no prediction. - - docs (Iterable[Doc]): The documents to predict. - RETURNS (List[str]): The models prediction for each document. - - DOCS: https://spacy.io/api/entitylinker#predict - """ - self.validate_kb() - entity_count = 0 - final_kb_ids: List[str] = [] - if not docs: - return final_kb_ids - if isinstance(docs, Doc): - docs = [docs] - for i, doc in enumerate(docs): - sentences = [s for s in doc.sents] - if len(doc) > 0: - # Looping through each entity (TODO: rewrite) - for ent in doc.ents: - sent = ent.sent - sent_index = sentences.index(sent) - assert sent_index >= 0 - # get n_neighbour sentences, clipped to the length of the document - start_sentence = max(0, sent_index - self.n_sents) - end_sentence = min(len(sentences) - 1, sent_index + self.n_sents) - start_token = sentences[start_sentence].start - end_token = sentences[end_sentence].end - sent_doc = doc[start_token:end_token].as_doc() - # currently, the context is the same for each entity in a sentence (should be refined) - xp = self.model.ops.xp - if self.incl_context: - sentence_encoding = self.model.predict([sent_doc])[0] - sentence_encoding_t = sentence_encoding.T - sentence_norm = xp.linalg.norm(sentence_encoding_t) - entity_count += 1 - if ent.label_ in self.labels_discard: - # ignoring this entity - setting to NIL - final_kb_ids.append(self.NIL) - else: - candidates = list(self.get_candidates(self.kb, ent)) - if not candidates: - # no prediction possible for this entity - setting to NIL - final_kb_ids.append(self.NIL) - elif len(candidates) == 1: - # shortcut for efficiency reasons: take the 1 candidate - final_kb_ids.append(candidates[0].entity_) - else: - random.shuffle(candidates) - # set all prior probabilities to 0 if incl_prior=False - prior_probs = xp.asarray([c.prior_prob for c in candidates]) - if not self.incl_prior: - prior_probs = xp.asarray([0.0 for _ in candidates]) - scores = prior_probs - # add in similarity from the context - if self.incl_context: - entity_encodings = xp.asarray( - [c.entity_vector for c in candidates] - ) - entity_norm = xp.linalg.norm(entity_encodings, axis=1) - if len(entity_encodings) != len(prior_probs): - raise RuntimeError( - Errors.E147.format( - method="predict", - msg="vectors not of equal length", - ) - ) - # cosine similarity - sims = xp.dot(entity_encodings, sentence_encoding_t) / ( - sentence_norm * entity_norm - ) - if sims.shape != prior_probs.shape: - raise ValueError(Errors.E161) - scores = prior_probs + sims - (prior_probs * sims) - best_index = scores.argmax().item() - best_candidate = candidates[best_index] - final_kb_ids.append(best_candidate.entity_) - if not (len(final_kb_ids) == entity_count): - err = Errors.E147.format( - method="predict", msg="result variables not of equal length" - ) - raise RuntimeError(err) - return final_kb_ids - - def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None: - """Modify a batch of documents, using pre-computed scores. - - docs (Iterable[Doc]): The documents to modify. - kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict. - - DOCS: https://spacy.io/api/entitylinker#set_annotations - """ - count_ents = len([ent for doc in docs for ent in doc.ents]) - if count_ents != len(kb_ids): - raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids))) - i = 0 - overwrite = self.cfg["overwrite"] - for doc in docs: - for ent in doc.ents: - kb_id = kb_ids[i] - i += 1 - for token in ent: - if token.ent_kb_id == 0 or overwrite: - token.ent_kb_id_ = kb_id - - def to_bytes(self, *, exclude=tuple()): - """Serialize the pipe to a bytestring. - - exclude (Iterable[str]): String names of serialization fields to exclude. - RETURNS (bytes): The serialized object. - - DOCS: https://spacy.io/api/entitylinker#to_bytes - """ - self._validate_serialization_attrs() - serialize = {} - if hasattr(self, "cfg") and self.cfg is not None: - serialize["cfg"] = lambda: srsly.json_dumps(self.cfg) - serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude) - serialize["kb"] = self.kb.to_bytes - serialize["model"] = self.model.to_bytes - return util.to_bytes(serialize, exclude) - - def from_bytes(self, bytes_data, *, exclude=tuple()): - """Load the pipe from a bytestring. - - exclude (Iterable[str]): String names of serialization fields to exclude. - RETURNS (TrainablePipe): The loaded object. - - DOCS: https://spacy.io/api/entitylinker#from_bytes - """ - self._validate_serialization_attrs() - - def load_model(b): - try: - self.model.from_bytes(b) - except AttributeError: - raise ValueError(Errors.E149) from None - - deserialize = {} - if hasattr(self, "cfg") and self.cfg is not None: - deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b)) - deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude) - deserialize["kb"] = lambda b: self.kb.from_bytes(b) - deserialize["model"] = load_model - util.from_bytes(bytes_data, deserialize, exclude) - return self - - def to_disk( - self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList() - ) -> None: - """Serialize the pipe to disk. - - path (str / Path): Path to a directory. - exclude (Iterable[str]): String names of serialization fields to exclude. - - DOCS: https://spacy.io/api/entitylinker#to_disk - """ - serialize = {} - serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude) - serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg) - serialize["kb"] = lambda p: self.kb.to_disk(p) - serialize["model"] = lambda p: self.model.to_disk(p) - util.to_disk(path, serialize, exclude) - - def from_disk( - self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList() - ) -> "EntityLinker_v1": - """Load the pipe from disk. Modifies the object in place and returns it. - - path (str / Path): Path to a directory. - exclude (Iterable[str]): String names of serialization fields to exclude. - RETURNS (EntityLinker): The modified EntityLinker object. - - DOCS: https://spacy.io/api/entitylinker#from_disk - """ - - def load_model(p): - try: - with p.open("rb") as infile: - self.model.from_bytes(infile.read()) - except AttributeError: - raise ValueError(Errors.E149) from None - - deserialize: Dict[str, Callable[[Any], Any]] = {} - deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p)) - deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude) - deserialize["kb"] = lambda p: self.kb.from_disk(p) - deserialize["model"] = load_model - util.from_disk(path, deserialize, exclude) - return self - - def rehearse(self, examples, *, sgd=None, losses=None, **config): - raise NotImplementedError - - def add_label(self, label): - raise NotImplementedError diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index 9a8ce6653..5ddf4cac8 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -12,7 +12,6 @@ from spacy.lang.en import English from spacy.ml import load_kb from spacy.ml.models.entity_linker import build_span_maker from spacy.pipeline import EntityLinker, TrainablePipe -from spacy.pipeline.legacy import EntityLinker_v1 from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.scorer import Scorer from spacy.tests.util import make_tempdir @@ -21,6 +20,8 @@ from spacy.training import Example from spacy.util import ensure_path from spacy.vocab import Vocab +from spacy_legacy.components.entity_linker import EntityLinker_v1 + @pytest.fixture def nlp():