mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-22 15:24:11 +03:00
Try using LinearModel in tagger.
This commit is contained in:
parent
eec3f21c50
commit
d44b1b337a
|
@ -1,17 +1,20 @@
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
from thinc.extra.eg cimport Example
|
from thinc.extra.eg cimport Example
|
||||||
from thinc.structs cimport ExampleC
|
from thinc.structs cimport ExampleC
|
||||||
|
from thinc.linear.features cimport ConjunctionExtracter
|
||||||
|
|
||||||
from .structs cimport TokenC
|
from .structs cimport TokenC
|
||||||
from .vocab cimport Vocab
|
from .vocab cimport Vocab
|
||||||
|
|
||||||
|
|
||||||
cdef class TaggerModel(AveragedPerceptron):
|
cdef class TaggerModel:
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
|
cdef ConjunctionExtracter extracter
|
||||||
|
cdef object model
|
||||||
|
|
||||||
|
|
||||||
cdef class Tagger:
|
cdef class Tagger:
|
||||||
cdef readonly Vocab vocab
|
cdef readonly Vocab vocab
|
||||||
cdef readonly TaggerModel model
|
cdef readonly TaggerModel model
|
||||||
cdef public dict freqs
|
cdef public dict freqs
|
||||||
cdef public object cfg
|
cdef public object cfg
|
||||||
|
cdef public object optimizer
|
||||||
|
|
148
spacy/tagger.pyx
148
spacy/tagger.pyx
|
@ -1,14 +1,25 @@
|
||||||
|
# cython: infer_types=True
|
||||||
|
# cython: profile=True
|
||||||
import json
|
import json
|
||||||
import pathlib
|
import pathlib
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from libc.string cimport memset
|
from libc.string cimport memset, memcpy
|
||||||
|
from libcpp.vector cimport vector
|
||||||
|
from libc.stdint cimport uint64_t, int32_t, int64_t
|
||||||
|
cimport numpy as np
|
||||||
|
import numpy as np
|
||||||
|
np.import_array()
|
||||||
|
|
||||||
from cymem.cymem cimport Pool
|
from cymem.cymem cimport Pool
|
||||||
from thinc.typedefs cimport atom_t, weight_t
|
from thinc.typedefs cimport atom_t, weight_t
|
||||||
from thinc.extra.eg cimport Example
|
from thinc.extra.eg cimport Example
|
||||||
from thinc.structs cimport ExampleC
|
from thinc.structs cimport ExampleC
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
from thinc.linalg cimport VecVec
|
from thinc.linalg cimport Vec, VecVec
|
||||||
|
from thinc.linear.linear import LinearModel
|
||||||
|
from thinc.structs cimport FeatureC
|
||||||
|
from thinc.neural.optimizers import Adam
|
||||||
|
from thinc.neural.ops import NumpyOps
|
||||||
|
|
||||||
from .typedefs cimport attr_t
|
from .typedefs cimport attr_t
|
||||||
from .tokens.doc cimport Doc
|
from .tokens.doc cimport Doc
|
||||||
|
@ -69,24 +80,69 @@ cpdef enum:
|
||||||
N_CONTEXT_FIELDS
|
N_CONTEXT_FIELDS
|
||||||
|
|
||||||
|
|
||||||
cdef class TaggerModel(AveragedPerceptron):
|
cdef class TaggerModel:
|
||||||
def update(self, Example eg):
|
def __init__(self, int nr_tag, templates):
|
||||||
self.time += 1
|
self.extracter = ConjunctionExtracter(templates)
|
||||||
guess = eg.guess
|
self.model = LinearModel(nr_tag)
|
||||||
best = VecVec.arg_max_if_zero(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
|
||||||
if guess != best:
|
|
||||||
for feat in eg.c.features[:eg.c.nr_feat]:
|
|
||||||
self.update_weight_ftrl(feat.key, best, -feat.value)
|
|
||||||
self.update_weight_ftrl(feat.key, guess, feat.value)
|
|
||||||
|
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
|
def begin_update(self, atom_t[:, ::1] contexts, drop=0.):
|
||||||
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
|
cdef vector[uint64_t]* keys = new vector[uint64_t]()
|
||||||
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
|
cdef vector[float]* values = new vector[float]()
|
||||||
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
|
cdef vector[int64_t]* lengths = new vector[int64_t]()
|
||||||
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
|
features = new vector[FeatureC](self.extracter.nr_templ)
|
||||||
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
|
features.resize(self.extracter.nr_templ)
|
||||||
|
cdef FeatureC feat
|
||||||
|
cdef int i, j
|
||||||
|
for i in range(contexts.shape[0]):
|
||||||
|
nr_feat = self.extracter.set_features(features.data(), &contexts[i, 0])
|
||||||
|
for j in range(nr_feat):
|
||||||
|
keys.push_back(features.at(j).key)
|
||||||
|
values.push_back(features.at(j).value)
|
||||||
|
lengths.push_back(nr_feat)
|
||||||
|
cdef np.ndarray[uint64_t, ndim=1] py_keys
|
||||||
|
cdef np.ndarray[float, ndim=1] py_values
|
||||||
|
cdef np.ndarray[long, ndim=1] py_lengths
|
||||||
|
py_keys = vector_uint64_2numpy(keys)
|
||||||
|
py_values = vector_float_2numpy(values)
|
||||||
|
py_lengths = vector_long_2numpy(lengths)
|
||||||
|
instance = (py_keys, py_values, py_lengths)
|
||||||
|
del keys
|
||||||
|
del values
|
||||||
|
del lengths
|
||||||
|
del features
|
||||||
|
return self.model.begin_update(instance, drop=drop)
|
||||||
|
|
||||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
def end_training(self, *args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def dump(self, *args, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
cdef np.ndarray[uint64_t, ndim=1] vector_uint64_2numpy(vector[uint64_t]* vec):
|
||||||
|
cdef np.ndarray[uint64_t, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='uint64')
|
||||||
|
memcpy(arr.data, vec.data(), sizeof(uint64_t) * vec.size())
|
||||||
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
cdef np.ndarray[long, ndim=1] vector_long_2numpy(vector[int64_t]* vec):
|
||||||
|
cdef np.ndarray[long, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='int64')
|
||||||
|
memcpy(arr.data, vec.data(), sizeof(int64_t) * vec.size())
|
||||||
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
cdef np.ndarray[float, ndim=1] vector_float_2numpy(vector[float]* vec):
|
||||||
|
cdef np.ndarray[float, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='float32')
|
||||||
|
memcpy(arr.data, vec.data(), sizeof(float) * vec.size())
|
||||||
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
cdef void fill_context(atom_t* context, const TokenC* tokens, int i) nogil:
|
||||||
|
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
||||||
|
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
||||||
|
_fill_from_token(&context[W_orth], &tokens[i])
|
||||||
|
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
||||||
|
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
||||||
|
|
||||||
|
|
||||||
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
||||||
|
@ -157,17 +213,17 @@ cdef class Tagger:
|
||||||
The newly constructed object.
|
The newly constructed object.
|
||||||
"""
|
"""
|
||||||
if model is None:
|
if model is None:
|
||||||
model = TaggerModel(cfg.get('features', self.feature_templates),
|
model = TaggerModel(vocab.morphology.n_tags,
|
||||||
L1=0.0)
|
cfg.get('features', self.feature_templates))
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.model = model
|
self.model = model
|
||||||
self.model.l1_penalty = 0.0
|
|
||||||
# TODO: Move this to tag map
|
# TODO: Move this to tag map
|
||||||
self.freqs = {TAG: defaultdict(int)}
|
self.freqs = {TAG: defaultdict(int)}
|
||||||
for tag in self.tag_names:
|
for tag in self.tag_names:
|
||||||
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
||||||
self.freqs[TAG][0] = 1
|
self.freqs[TAG][0] = 1
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
self.optimizer = Adam(NumpyOps(), 0.001)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def tag_names(self):
|
def tag_names(self):
|
||||||
|
@ -194,20 +250,20 @@ cdef class Tagger:
|
||||||
if tokens.length == 0:
|
if tokens.length == 0:
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
cdef Pool mem = Pool()
|
cdef atom_t[1][N_CONTEXT_FIELDS] c_context
|
||||||
|
memset(c_context, 0, sizeof(c_context))
|
||||||
|
cdef atom_t[:, ::1] context = c_context
|
||||||
|
cdef float[:, ::1] scores
|
||||||
|
|
||||||
cdef int i, tag
|
cdef int nr_class = self.vocab.morphology.n_tags
|
||||||
cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
|
|
||||||
nr_class=self.vocab.morphology.n_tags,
|
|
||||||
nr_feat=self.model.nr_feat)
|
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
if tokens.c[i].pos == 0:
|
if tokens.c[i].pos == 0:
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
fill_context(&context[0, 0], tokens.c, i)
|
||||||
self.model.set_scoresC(eg.c.scores,
|
scores, _ = self.model.begin_update(context)
|
||||||
eg.c.features, eg.c.nr_feat)
|
|
||||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
guess = Vec.arg_max(&scores[0, 0], nr_class)
|
||||||
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
||||||
eg.fill_scores(0, eg.c.nr_class)
|
memset(&scores[0, 0], 0, sizeof(float) * scores.size)
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
|
|
||||||
|
@ -239,6 +295,7 @@ cdef class Tagger:
|
||||||
Returns (int):
|
Returns (int):
|
||||||
Number of tags correct.
|
Number of tags correct.
|
||||||
"""
|
"""
|
||||||
|
cdef int nr_class = self.vocab.morphology.n_tags
|
||||||
gold_tag_strs = gold.tags
|
gold_tag_strs = gold.tags
|
||||||
assert len(tokens) == len(gold_tag_strs)
|
assert len(tokens) == len(gold_tag_strs)
|
||||||
for tag in gold_tag_strs:
|
for tag in gold_tag_strs:
|
||||||
|
@ -248,24 +305,25 @@ cdef class Tagger:
|
||||||
raise ValueError(msg % tag)
|
raise ValueError(msg % tag)
|
||||||
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
||||||
cdef int correct = 0
|
cdef int correct = 0
|
||||||
cdef Pool mem = Pool()
|
|
||||||
cdef Example eg = Example(
|
cdef atom_t[:, ::1] context = np.zeros((1, N_CONTEXT_FIELDS), dtype='uint64')
|
||||||
nr_atom=N_CONTEXT_FIELDS,
|
cdef float[:, ::1] scores
|
||||||
nr_class=self.vocab.morphology.n_tags,
|
|
||||||
nr_feat=self.model.nr_feat)
|
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
fill_context(&context[0, 0], tokens.c, i)
|
||||||
eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
|
scores, finish_update = self.model.begin_update(context)
|
||||||
self.model.set_scoresC(eg.c.scores,
|
guess = Vec.arg_max(&scores[0, 0], nr_class)
|
||||||
eg.c.features, eg.c.nr_feat)
|
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
||||||
self.model.update(eg)
|
|
||||||
|
|
||||||
self.vocab.morphology.assign_tag_id(&tokens.c[i], eg.guess)
|
if golds[i] != -1:
|
||||||
|
scores[0, golds[i]] -= 1
|
||||||
|
finish_update(scores, lambda *args, **kwargs: None)
|
||||||
|
|
||||||
correct += eg.cost == 0
|
if (golds[i] in (guess, -1)):
|
||||||
|
correct += 1
|
||||||
self.freqs[TAG][tokens.c[i].tag] += 1
|
self.freqs[TAG][tokens.c[i].tag] += 1
|
||||||
eg.fill_scores(0, eg.c.nr_class)
|
self.optimizer(self.model.model.weights, self.model.model.d_weights,
|
||||||
eg.fill_costs(0, eg.c.nr_class)
|
key=self.model.model.id)
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
return correct
|
return correct
|
||||||
|
|
Loading…
Reference in New Issue
Block a user