* Add a simple example POS tagger script

This commit is contained in:
Matthew Honnibal 2015-09-22 15:56:14 +10:00
parent f5c256745b
commit d4a013ccab

View File

@ -0,0 +1,70 @@
"""A quick example for training a part-of-speech tagger, without worrying
about the tokenization, or other language-specific customizations."""
from __future__ import unicode_literals
from __future__ import print_function
import plac
from os import path
import os
from spacy.vocab import Vocab
from spacy.tokenizer import Tokenizer
from spacy.tagger import Tagger
import random
# You need to define a mapping from your data's part-of-speech tag names to the
# Universal Part-of-Speech tag set, as spaCy includes an enum of these tags.
# See here for the Universal Tag Set:
# http://universaldependencies.github.io/docs/u/pos/index.html
# You may also specify morphological features for your tags, from the universal
# scheme.
TAG_MAP = {
'N': {"pos": "NOUN"},
'V': {"pos": "VERB"},
'J': {"pos": "ADJ"}
}
# Usually you'll read this in, of course. Data formats vary.
# Ensure your strings are unicode.
DATA = [
(
["I", "like", "green", "eggs"],
["N", "V", "J", "N"]
),
(
["Eat", "blue", "ham"],
["V", "J", "N"]
)
]
def ensure_dir(*parts):
path_ = path.join(*parts)
if not path.exists(path_):
os.mkdir(path_)
return path_
def main(output_dir):
ensure_dir(output_dir)
ensure_dir(output_dir, "pos")
ensure_dir(output_dir, "vocab")
vocab = Vocab(tag_map=TAG_MAP)
tokenizer = Tokenizer(vocab, {}, None, None, None)
# The default_templates argument is where features are specified. See
# spacy/tagger.pyx for the defaults.
tagger = Tagger.blank(vocab, Tagger.default_templates())
for i in range(5):
for words, tags in DATA:
tokens = tokenizer.tokens_from_list(words)
tagger.train(tokens, tags)
random.shuffle(DATA)
tagger.model.end_training(path.join(output_dir, 'pos', 'model'))
vocab.strings.dump(path.join(output_dir, 'vocab', 'strings.txt'))
if __name__ == '__main__':
plac.call(main)