mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 00:04:15 +03:00
Fix shape inference
This commit is contained in:
parent
df87c32a40
commit
d507ac28d8
|
@ -15,9 +15,10 @@ def build_tb_parser_model(
|
|||
use_upper=True,
|
||||
nO=None,
|
||||
):
|
||||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
tok2vec = chain(
|
||||
tok2vec,
|
||||
with_array(Linear(hidden_width)),
|
||||
with_array(Linear(hidden_width, t2v_width)),
|
||||
list2array(),
|
||||
)
|
||||
tok2vec.set_dim("nO", hidden_width)
|
||||
|
|
|
@ -7,7 +7,8 @@ from ...util import registry
|
|||
@registry.architectures.register("spacy.Tagger.v1")
|
||||
def build_tagger_model(tok2vec, nO=None) -> Model:
|
||||
# TODO: glorot_uniform_init seems to work a bit better than zero_init here?!
|
||||
output_layer = Softmax(nO, init_W=zero_init)
|
||||
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
||||
output_layer = Softmax(nO, t2v_width, init_W=zero_init)
|
||||
softmax = with_array(output_layer)
|
||||
model = chain(tok2vec, softmax)
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
|
|
Loading…
Reference in New Issue
Block a user