mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
* Allow parser to jackknife POS tags before training.
This commit is contained in:
parent
c4f0914b4e
commit
d512d20d81
|
@ -39,14 +39,19 @@ def add_noise(c, noise_level):
|
|||
return c.lower()
|
||||
|
||||
|
||||
def score_model(scorer, nlp, raw_text, annot_tuples):
|
||||
def score_model(scorer, nlp, raw_text, annot_tuples, train_tags=None):
|
||||
if raw_text is None:
|
||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||
nlp.tagger(tokens)
|
||||
nlp.entity(tokens)
|
||||
nlp.parser(tokens)
|
||||
else:
|
||||
tokens = nlp(raw_text, merge_mwes=False)
|
||||
tokens = nlp.tokenizer(raw_text, merge_mwes=False)
|
||||
if train_tags is not None:
|
||||
key = hash(tokens.string)
|
||||
nlp.tagger.tag_from_strings(tokens, train_tags[key])
|
||||
else:
|
||||
nlp.tagger(tokens)
|
||||
|
||||
nlp.entity(tokens)
|
||||
nlp.parser(tokens)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
scorer.score(tokens, gold, verbose=False)
|
||||
|
||||
|
@ -65,10 +70,78 @@ def _merge_sents(sents):
|
|||
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
|
||||
i += len(ids)
|
||||
return [(m_deps, m_brackets)]
|
||||
|
||||
|
||||
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0,
|
||||
gold_preproc=False, n_sents=0, corruption_level=0):
|
||||
|
||||
def get_train_tags(Language, model_dir, docs, gold_preproc):
|
||||
taggings = {}
|
||||
for train_part, test_part in get_partitions(docs, 5):
|
||||
nlp = _train_tagger(Language, model_dir, train_part, gold_preproc)
|
||||
for tokens in _tag_partition(nlp, test_part):
|
||||
taggings[hash(tokens.string)] = [w.tag_ for w in tokens]
|
||||
return taggings
|
||||
|
||||
def get_partitions(docs, n_parts):
|
||||
n_test = len(docs) / n_parts
|
||||
n_train = len(docs) - n_test
|
||||
for part in range(n_parts):
|
||||
start = int(part * n_test)
|
||||
end = int(start + n_test)
|
||||
yield docs[:start] + docs[end:], docs[start:end]
|
||||
|
||||
|
||||
def _train_tagger(Language, model_dir, docs, gold_preproc=False, n_iter=5):
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
if path.exists(pos_model_dir):
|
||||
shutil.rmtree(pos_model_dir)
|
||||
os.mkdir(pos_model_dir)
|
||||
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
|
||||
|
||||
nlp = Language(data_dir=model_dir)
|
||||
|
||||
print "Itn.\tTag %"
|
||||
for itn in range(n_iter):
|
||||
scorer = Scorer()
|
||||
correct = 0
|
||||
total = 0
|
||||
for raw_text, sents in docs:
|
||||
if gold_preproc:
|
||||
raw_text = None
|
||||
else:
|
||||
sents = _merge_sents(sents)
|
||||
for annot_tuples, ctnt in sents:
|
||||
if raw_text is None:
|
||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||
else:
|
||||
tokens = nlp.tokenizer(raw_text)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
correct += nlp.tagger.train(tokens, gold.tags)
|
||||
total += len(tokens)
|
||||
random.shuffle(docs)
|
||||
print itn, '%.3f' % (correct / total)
|
||||
nlp.tagger.model.end_training()
|
||||
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
|
||||
return nlp
|
||||
|
||||
|
||||
def _tag_partition(nlp, docs, gold_preproc=False):
|
||||
for raw_text, sents in docs:
|
||||
if gold_preproc:
|
||||
raw_text = None
|
||||
else:
|
||||
sents = _merge_sents(sents)
|
||||
for annot_tuples, _ in sents:
|
||||
if raw_text is None:
|
||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||
else:
|
||||
tokens = nlp.tokenizer(raw_text)
|
||||
|
||||
nlp.tagger(tokens)
|
||||
yield tokens
|
||||
|
||||
|
||||
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
|
||||
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
|
||||
train_tags=None):
|
||||
dep_model_dir = path.join(model_dir, 'deps')
|
||||
pos_model_dir = path.join(model_dir, 'pos')
|
||||
ner_model_dir = path.join(model_dir, 'ner')
|
||||
|
@ -91,6 +164,7 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0
|
|||
|
||||
if n_sents > 0:
|
||||
gold_tuples = gold_tuples[:n_sents]
|
||||
|
||||
nlp = Language(data_dir=model_dir)
|
||||
|
||||
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
|
||||
|
@ -103,15 +177,25 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0
|
|||
else:
|
||||
sents = _merge_sents(sents)
|
||||
for annot_tuples, ctnt in sents:
|
||||
score_model(scorer, nlp, raw_text, annot_tuples)
|
||||
score_model(scorer, nlp, raw_text, annot_tuples, train_tags)
|
||||
if raw_text is None:
|
||||
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
||||
else:
|
||||
tokens = nlp.tokenizer(raw_text)
|
||||
gold = GoldParse(tokens, annot_tuples)
|
||||
nlp.tagger(tokens)
|
||||
if train_tags is not None:
|
||||
sent_id = hash(tokens.string)
|
||||
nlp.tagger.tag_from_strings(tokens, train_tags[sent_id])
|
||||
else:
|
||||
nlp.tagger(tokens)
|
||||
gold = GoldParse(tokens, annot_tuples, make_projective=True)
|
||||
if gold.is_projective:
|
||||
loss += nlp.parser.train(tokens, gold)
|
||||
try:
|
||||
loss += nlp.parser.train(tokens, gold)
|
||||
except:
|
||||
for i in range(len(tokens)):
|
||||
print tokens[i].orth_, gold.heads[i]
|
||||
raise
|
||||
|
||||
nlp.entity.train(tokens, gold)
|
||||
nlp.tagger.train(tokens, gold.tags)
|
||||
random.shuffle(gold_tuples)
|
||||
|
@ -174,10 +258,12 @@ def write_parses(Language, dev_loc, model_dir, out_loc):
|
|||
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
|
||||
debug=False, corruption_level=0.0, gold_preproc=False):
|
||||
gold_train = list(read_json_file(train_loc))
|
||||
taggings = get_train_tags(English, model_dir, gold_train, gold_preproc)
|
||||
train(English, gold_train, model_dir,
|
||||
feat_set='basic' if not debug else 'debug',
|
||||
gold_preproc=gold_preproc, n_sents=n_sents,
|
||||
corruption_level=corruption_level, n_iter=n_iter)
|
||||
corruption_level=corruption_level, n_iter=n_iter,
|
||||
train_tags=taggings)
|
||||
if out_loc:
|
||||
write_parses(English, dev_loc, model_dir, out_loc)
|
||||
scorer = evaluate(English, list(read_json_file(dev_loc)),
|
||||
|
|
Loading…
Reference in New Issue
Block a user